scipy.special.ndtr#
- scipy.special.ndtr(x, out=None) = <ufunc 'ndtr'>#
Cumulative distribution of the standard normal distribution.
Returns the area under the standard Gaussian probability density function, integrated from minus infinity to x
\[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp(-t^2/2) dt\]- Parameters:
- xarray_like, real or complex
Argument
- outndarray, optional
Optional output array for the function results
- Returns:
- scalar or ndarray
The value of the normal CDF evaluated at x
See also
log_ndtrLogarithm of ndtr
ndtriInverse of ndtr, standard normal percentile function
erfError function
erfc1 - erf
scipy.stats.normNormal distribution
Notes
Array API Standard Support
ndtrhas experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
✅
PyTorch
✅
✅
JAX
✅
✅
Dask
✅
n/a
See Support for the array API standard for more information.
Examples
Evaluate
ndtrat one point.>>> import numpy as np >>> from scipy.special import ndtr >>> ndtr(0.5) 0.6914624612740131
Evaluate the function at several points by providing a NumPy array or list for x.
>>> ndtr([0, 0.5, 2]) array([0.5 , 0.69146246, 0.97724987])
Plot the function.
>>> import matplotlib.pyplot as plt >>> x = np.linspace(-5, 5, 100) >>> fig, ax = plt.subplots() >>> ax.plot(x, ndtr(x)) >>> ax.set_title(r"Standard normal cumulative distribution function $\Phi$") >>> plt.show()