scipy.special.ndtri#

scipy.special.ndtri(p, out=None) = <ufunc 'ndtri'>#

Inverse of ndtr.

Returns the quantile x such that the cumulative distribution function of the standard normal distribution evaluated at x equals p, that is, ndtr(x) == p.

Parameters:
parray_like

Probability values.

outndarray, optional

Optional output array for the function results.

Returns:
xscalar or ndarray

Quantile(s) corresponding to the probabilitie(s) in p.

See also

ndtr

Standard normal cumulative distribution function

ndtri_exp

Inverse of log_ndtr

Notes

Array API Standard Support

ndtri has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variable SCIPY_ARRAY_API=1 and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.

Library

CPU

GPU

NumPy

n/a

CuPy

n/a

PyTorch

JAX

Dask

n/a

See Support for the array API standard for more information.

Examples

ndtri is the percentile (quantile) function of the standard normal distribution, i.e., the inverse of the cumulative distribution function ndtr.

First, compute a cumulative distribution value:

>>> import numpy as np
>>> from scipy.special import ndtri, ndtr
>>> cdf_val = ndtr(2)
>>> cdf_val
0.9772498680518208

Verify that ndtri yields the original value for x up to floating point errors.

>>> ndtri(cdf_val)
2.0000000000000004

Plot the percentile function over a range of probabilities.

>>> import matplotlib.pyplot as plt
>>> p = np.linspace(1e-3, 1 - 1e-3, 201)
>>> fig, ax = plt.subplots()
>>> ax.plot(p, ndtri(p))
>>> ax.set_title("Standard normal percentile function")
>>> plt.show()
../../_images/scipy-special-ndtri-1.png