scipy.special.mathieu_cem#
- scipy.special.mathieu_cem(m, q, x, out=None) = <ufunc 'mathieu_cem'>#
Even Mathieu function and its derivative
Returns the even Mathieu function,
ce_m(x, q)
, of order m and parameter q evaluated at x (given in degrees). Also returns the derivative with respect to x of ce_m(x, q)- Parameters:
- marray_like
Order of the function
- qarray_like
Parameter of the function
- xarray_like
Argument of the function, given in degrees, not radians
- outtuple of ndarray, optional
Optional output arrays for the function results
- Returns:
- yscalar or ndarray
Value of the function
- ypscalar or ndarray
Value of the derivative vs x
See also
Notes
The even Mathieu functions are the solutions to Mathieu’s differential equation
\[\frac{d^2y}{dx^2} + (a_m - 2q \cos(2x))y = 0\]for which the characteristic number \(a_m\) (calculated with
mathieu_a
) results in an odd, periodic solution \(y(x)\) with period 180 degrees (for even \(m\)) or 360 degrees (for odd \(m\)).References
[1]‘Mathieu function’. Wikipedia. https://en.wikipedia.org/wiki/Mathieu_function
Examples
Plot even Mathieu functions of orders
2
and4
.>>> import numpy as np >>> from scipy import special >>> import matplotlib.pyplot as plt >>> m = np.asarray([2, 4]) >>> q = 50 >>> x = np.linspace(-180, 180, 300)[:, np.newaxis] >>> y, _ = special.mathieu_cem(m, q, x) >>> plt.plot(x, y) >>> plt.xlabel('x (degrees)') >>> plt.ylabel('y') >>> plt.legend(('m = 2', 'm = 4'))
Because the orders
2
and4
are even, the period of each function is 180 degrees.