scipy.special.btdtrib#
- scipy.special.btdtrib(a, p, x, out=None) = <ufunc 'btdtrib'>#
Inverse of
betainc
with respect to b.This is the inverse of the beta cumulative distribution function,
betainc
, considered as a function of b, returning the value of b for which betainc(a, b, x) = p, or\[p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt\]- Parameters:
- aarray_like
Shape parameter (a > 0).
- parray_like
Cumulative probability, in [0, 1].
- xarray_like
The quantile, in [0, 1].
- outndarray, optional
Optional output array for the function values
- Returns:
- bscalar or ndarray
The value of the shape parameter b such that betainc(a, b, x) = p.
See also
btdtria
Inverse of the beta cumulative distribution function, with respect to a.
Notes
Wrapper for the CDFLIB [1] Fortran routine cdfbet.
The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of b involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with b.
References
[1]Barry Brown, James Lovato, and Kathy Russell, CDFLIB: Library of Fortran Routines for Cumulative Distribution Functions, Inverses, and Other Parameters.
[2]DiDinato, A. R. and Morris, A. H., Algorithm 708: Significant Digit Computation of the Incomplete Beta Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.