scipy.spatial.transform.RigidTransform.
as_matrix#
- RigidTransform.as_matrix(self)#
Return a copy of the matrix representation of the transform.
4x4 rigid transformation matrices are of the form:
[R | t] [0 | 1]
where
R
is a 3x3 orthonormal rotation matrix andt
is a 3x1 translation vector[tx, ty, tz]
.- Returns:
- matrixnumpy.ndarray, shape (4, 4) or (N, 4, 4)
A single transformation matrix or a stack of transformation matrices.
Examples
>>> from scipy.spatial.transform import RigidTransform as Tf >>> from scipy.spatial.transform import Rotation as R >>> import numpy as np
A transformation matrix is a 4x4 matrix formed from a 3x3 rotation matrix and a 3x1 translation vector:
>>> t = np.array([2, 3, 4]) >>> r = R.from_matrix([[0, 0, 1], ... [1, 0, 0], ... [0, 1, 0]]) >>> tf = Tf.from_components(t, r) >>> tf.as_matrix() array([[ 0., 0., 1., 2.], [ 1., 0., 0., 3.], [ 0., 1., 0., 4.], [ 0., 0., 0., 1.]])
>>> Tf.identity(2).as_matrix() array([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]], [[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]])