morphological_gradient#
- scipy.ndimage.morphological_gradient(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0, *, axes=None)[source]#
Multidimensional morphological gradient.
The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a given structuring element.
- Parameters:
- inputarray_like
Array over which to compute the morphlogical gradient.
- sizetuple of ints
Shape of a flat and full structuring element used for the mathematical morphology operations. Optional if footprint or structure is provided. A larger size yields a more blurred gradient.
- footprintarray of ints, optional
Positions of non-infinite elements of a flat structuring element used for the morphology operations. Larger footprints give a more blurred morphological gradient.
- structurearray of ints, optional
Structuring element used for the morphology operations. structure may be a non-flat structuring element. The structure array applies offsets to the pixels in a neighborhood (the offset is additive during dilation and subtractive during erosion)
- outputarray, optional
An array used for storing the output of the morphological gradient may be provided.
- mode{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’
- cvalscalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0.
- originscalar, optional
The origin parameter controls the placement of the filter. Default 0
- axestuple of int or None
The axes over which to apply the filter. If None, input is filtered along all axes. If an origin tuple is provided, its length must match the number of axes.
- Returns:
- morphological_gradientndarray
Morphological gradient of input.
See also
Notes
For a flat structuring element, the morphological gradient computed at a given point corresponds to the maximal difference between elements of the input among the elements covered by the structuring element centered on the point.
References
Examples
>>> from scipy import ndimage >>> import numpy as np >>> a = np.zeros((7,7), dtype=int) >>> a[2:5, 2:5] = 1 >>> ndimage.morphological_gradient(a, size=(3,3)) array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 0, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> # The morphological gradient is computed as the difference >>> # between a dilation and an erosion >>> ndimage.grey_dilation(a, size=(3,3)) -\ ... ndimage.grey_erosion(a, size=(3,3)) array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 0, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> a = np.zeros((7,7), dtype=int) >>> a[2:5, 2:5] = 1 >>> a[4,4] = 2; a[2,3] = 3 >>> a array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 3, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> ndimage.morphological_gradient(a, size=(3,3)) array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 3, 3, 1, 0], [0, 1, 3, 2, 3, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 1, 1, 2, 2, 2, 0], [0, 0, 0, 0, 0, 0, 0]])