This is an archival dump of old wiki content --- see scipy.org for current material

This is an auto-generated version of Numpy Example List with added documentation from doc strings and arguments specification for methods and functions of Numpy 1.2.1.

Please do not edit this page directly. To update this page just follow the instructions.


...

>>> from numpy import *
>>> a = arange(12)
>>> a = a.reshape(3,2,2)
>>> print a
[[[ 0  1]
[ 2  3]]
[[ 4  5]
[ 6  7]]
[[ 8  9]
[10 11]]]
>>> a[...,0]                               # same as a[:,:,0]
array([[ 0,  2],
[ 4,  6],
[ 8, 10]])
>>> a[1:,...]                              # same as a[1:,:,:] or just a[1:]
array([[[ 4,  5],
[ 6,  7]],
[[ 8,  9],
[10, 11]]])

See also: [], newaxis

[]

>>> from numpy import *
>>> a = array([ [ 0, 1, 2, 3, 4],
...             [10,11,12,13,14],
...             [20,21,22,23,24],
...             [30,31,32,33,34] ])
>>>
>>> a[0,0]                                       # indices start by zero
0
>>> a[-1]                                        # last row
array([30, 31, 32, 33, 34])
>>> a[1:3,1:4]                                   # subarray
array([[11, 12, 13],
[21, 22, 23]])
>>>
>>> i = array([0,1,2,1])                         # array of indices for the first axis
>>> j = array([1,2,3,4])                         # array of indices for the second axis
>>> a[i,j]
array([ 1, 12, 23, 14])
>>>
>>> a[a<13]                                      # boolean indexing
array([ 0,  1,  2,  3,  4, 10, 11, 12])
>>>
>>> b1 = array( [True,False,True,False] )        # boolean row selector
>>> a[b1,:]
array([[ 0,  1,  2,  3,  4],
[20, 21, 22, 23, 24]])
>>>
>>> b2 = array( [False,True,True,False,True] )   # boolean column selector
>>> a[:,b2]
array([[ 1,  2,  4],
[11, 12, 14],
[21, 22, 24],
[31, 32, 34]])

See also: ..., newaxis, ix_, indices, nonzero, where, slice

T

ndarray.T

Same as self.transpose() except self is returned for self.ndim < 2.

Examples
--------
>>> x = np.array([[1.,2.],[3.,4.]])
>>> x.T
array([[ 1.,  3.],
       [ 2.,  4.]])

>>> from numpy import *
>>> x = array([[1.,2.],[3.,4.]])
>>> x
array([[ 1.,  2.],
[ 3.,  4.]])
>>> x.T                                           # shortcut for transpose()
array([[ 1.,  3.],
[ 2.,  4.]])

See also: transpose

abs()

numpy.abs(...)

y = absolute(x)

Calculate the absolute value element-wise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
res : ndarray
    An ndarray containing the absolute value of
    each element in `x`.  For complex input, ``a + ib``, the
    absolute value is :math:`\sqrt{ a^2 + b^2 }`.

Examples
--------
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2,  1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over ``[-10, 10]``:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-10, 10, 101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
>>> plt.show()

>>> from numpy import *
>>> abs(-1)
1
>>> abs(array([-1.2, 1.2]))
array([ 1.2,  1.2])
>>> abs(1.2+1j)
1.5620499351813308

See also: absolute, angle

absolute()

numpy.absolute(...)

y = absolute(x)

Calculate the absolute value element-wise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
res : ndarray
    An ndarray containing the absolute value of
    each element in `x`.  For complex input, ``a + ib``, the
    absolute value is :math:`\sqrt{ a^2 + b^2 }`.

Examples
--------
>>> x = np.array([-1.2, 1.2])
>>> np.absolute(x)
array([ 1.2,  1.2])
>>> np.absolute(1.2 + 1j)
1.5620499351813308

Plot the function over ``[-10, 10]``:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-10, 10, 101)
>>> plt.plot(x, np.absolute(x))
>>> plt.show()

Plot the function over the complex plane:

>>> xx = x + 1j * x[:, np.newaxis]
>>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10])
>>> plt.show()

Synonym for abs()

See abs

accumulate

>>> from numpy import *
>>> add.accumulate(array([1.,2.,3.,4.]))                   # like reduce() but also gives intermediate results
array([  1.,   3.,   6.,  10.])
>>> array([1., 1.+2., (1.+2.)+3., ((1.+2.)+3.)+4.])        # this is what it computed
array([  1.,   3.,   6.,  10.])
>>> multiply.accumulate(array([1.,2.,3.,4.]))              # works also with other operands
array([  1.,   2.,   6.,  24.])
>>> array([1., 1.*2., (1.*2.)*3., ((1.*2.)*3.)*4.])        # this is what it computed
array([  1.,   2.,   6.,  24.])
>>> add.accumulate(array([[1,2,3],[4,5,6]]), axis = 0)     # accumulate every column separately
array([[1, 2, 3],
[5, 7, 9]])
>>> add.accumulate(array([[1,2,3],[4,5,6]]), axis = 1)     # accumulate every row separately
array([[ 1,  3,  6],
[ 4,  9, 15]])

See also: reduce, cumprod, cumsum

add()

numpy.add(...)

y = add(x1,x2)

Add arguments element-wise.

Parameters
----------
x1, x2 : array_like
    The arrays to be added.

Returns
-------
y : {ndarray, scalar}
    The sum of `x1` and `x2`, element-wise.  Returns scalar if
    both  `x1` and `x2` are scalars.

Notes
-----
Equivalent to `x1` + `x2` in terms of array broadcasting.

Examples
--------
>>> np.add(1.0, 4.0)
5.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.add(x1, x2)
array([[  0.,   2.,   4.],
       [  3.,   5.,   7.],
       [  6.,   8.,  10.]])

>>> from numpy import *
>>> add(array([-1.2, 1.2]), array([1,3]))
array([-0.2,  4.2])
>>> array([-1.2, 1.2]) + array([1,3])
array([-0.2,  4.2])

alen()

numpy.alen(a)

Return the length of the first dimension of the input array.

Parameters
----------
a : array_like
   Input array.

Returns
-------
alen : int
   Length of the first dimension of `a`.

See Also
--------
shape

Examples
--------
>>> a = np.zeros((7,4,5))
>>> a.shape[0]
7
>>> np.alen(a)
7

all()

numpy.all(a, axis=None, out=None)

Returns True if all elements evaluate to True.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    Axis over which to perform the operation.
    If None, use a flattened input array and return a bool.
out : ndarray, optional
    Array into which the result is placed. Its type is preserved
    and it must be of the right shape to hold the output.

Returns
-------
out : ndarray, bool
    A logical AND is performed along `axis`, and the result placed
    in `out`.  If `out` was not specified, a new output array is created.

See Also
--------
ndarray.all : equivalent method

Notes
-----
Since NaN is not equal to zero, NaN evaluates to True.

Examples
--------
>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([ True, False], dtype=bool)

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

ndarray.all(...)

a.all(axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also
--------
numpy.all : equivalent function

>>> from numpy import *
>>> a = array([True, False, True])
>>> a.all()                              # if all elements of a are True: return True; otherwise False
False
>>> all(a)                              # this form also exists
False
>>> a = array([1,2,3])
>>> all(a > 0)                         # equivalent to (a > 0).all()
True

See also: any, alltrue, sometrue

allclose()

numpy.allclose(a, b, rtol=1.0000000000000001e-005, atol=1e-008)

Returns True if two arrays are element-wise equal within a tolerance.

The tolerance values are positive, typically very small numbers.  The
relative difference (`rtol` * `b`) and the absolute difference (`atol`)
are added together to compare against the absolute difference between `a`
and `b`.

Parameters
----------
a, b : array_like
    Input arrays to compare.
rtol : Relative tolerance
    The relative difference is equal to `rtol` * `b`.
atol : Absolute tolerance
    The absolute difference is equal to `atol`.

Returns
-------
y : bool
    Returns True if the two arrays are equal within the given
    tolerance; False otherwise. If either array contains NaN, then
    False is returned.

See Also
--------
all, any, alltrue, sometrue

Notes
-----
If the following equation is element-wise True, then allclose returns
True.

 absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))

Examples
--------
>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8])
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9])
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9])
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan])
False

>>> allclose(array([1e10,1e-7]), array([1.00001e10,1e-8]))
False
>>> allclose(array([1e10,1e-8]), array([1.00001e10,1e-9]))
True
>>> allclose(array([1e10,1e-8]), array([1.0001e10,1e-9]))
False

alltrue()

numpy.alltrue(a, axis=None, out=None)

Check if all elements of input array are true.

See Also
--------
numpy.all : Equivalent function; see for details.

>>> from numpy import *
>>> b = array([True, False, True, True])
>>> alltrue(b)
False
>>> a = array([1, 5, 2, 7])
>>> alltrue(a >= 5)
False

See also: sometrue, all, any

alterdot()

numpy.alterdot(...)

alterdot() changes all dot functions to use blas.

amax()

numpy.amax(a, axis=None, out=None)

Return the maximum along an axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which to operate.  By default flattened input is used.
out : ndarray, optional
    Alternative output array in which to place the result.  Must
    be of the same shape and buffer length as the expected output.

Returns
-------
amax : ndarray
    A new array or a scalar with the result, or a reference to `out`
    if it was specified.

Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
       [2, 3]])
>>> np.amax(a, axis=0)
array([2, 3])
>>> np.amax(a, axis=1)
array([1, 3])

amin()

numpy.amin(a, axis=None, out=None)

Return the minimum along an axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which to operate.  By default a flattened input is used.
out : ndarray, optional
    Alternative output array in which to place the result.  Must
    be of the same shape and buffer length as the expected output.

Returns
-------
amin : ndarray
    A new array or a scalar with the result, or a reference to `out` if it
    was specified.

Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
       [2, 3]])
>>> np.amin(a)           # Minimum of the flattened array
0
>>> np.amin(a, axis=0)         # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1)         # Minima along the second axis
array([0, 2])

angle()

numpy.angle(z, deg=0)

Return the angle of the complex argument.

Parameters
----------
z : array_like
    A complex number or sequence of complex numbers.
deg : bool, optional
    Return angle in degrees if True, radians if False (default).

Returns
-------
angle : {ndarray, scalar}
    The counterclockwise angle from the positive real axis on
    the complex plane, with dtype as numpy.float64.

See Also
--------
arctan2

Examples
--------
>>> np.angle([1.0, 1.0j, 1+1j])               # in radians
array([ 0.        ,  1.57079633,  0.78539816])
>>> np.angle(1+1j, deg=True)                  # in degrees
45.0

>>> from numpy import *
>>> angle(1+1j)                                   # in radians
0.78539816339744828
>>> angle(1+1j,deg=True)                          # in degrees
45.0

See also: real, imag, hypot

any()

numpy.any(a, axis=None, out=None)

Test whether any elements of an array evaluate to True along an axis.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    Axis over which to perform the operation.
    If None, use a flattened input array and return a bool.
out : ndarray, optional
    Array into which the result is placed. Its type is preserved
    and it must be of the right shape to hold the output.

Returns
-------
out : ndarray
    A logical OR is performed along `axis`, and the result placed
    in `out`.  If `out` was not specified, a new output array is created.

See Also
--------
ndarray.any : equivalent method

Notes
-----
Since NaN is not equal to zero, NaN evaluates to True.

Examples
--------
>>> np.any([[True, False], [True, True]])
True

>>> np.any([[True, False], [False, False]], axis=0)
array([ True, False], dtype=bool)

>>> np.any([-1, 0, 5])
True

>>> np.any(np.nan)
True

ndarray.any(...)

a.any(axis=None, out=None)

Check if any of the elements of `a` are true.

Refer to `numpy.any` for full documentation.

See Also
--------
numpy.any : equivalent function

>>> from numpy import *
>>> a = array([True, False, True])
>>> a.any()                                 # gives True if at least 1 element of a is True, otherwise False
True
>>> any(a)                                  # this form also exists
True
>>> a = array([1,2,3])
>>> (a >= 1).any()                          # equivalent to any(a >= 1)
True

See also: all, alltrue, sometrue

append()

numpy.append(arr, values, axis=None)

Append values to the end of an array.

Parameters
----------
arr : array_like
    Values are appended to a copy of this array.
values : array_like
    These values are appended to a copy of `arr`.  It must be of the
    correct shape (the same shape as `arr`, excluding `axis`).  If `axis`
    is not specified, `values` can be any shape and will be flattened
    before use.
axis : int, optional
    The axis along which `values` are appended.  If `axis` is not given,
    both `arr` and `values` are flattened before use.

Returns
-------
out : ndarray
    A copy of `arr` with `values` appended to `axis`.  Note that `append`
    does not occur in-place: a new array is allocated and filled.

Examples
--------
>>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

>>> from numpy import *
>>> a = array([10,20,30,40])
>>> append(a,50)
array([10, 20, 30, 40, 50])
>>> append(a,[50,60])
array([10, 20, 30, 40, 50, 60])
>>> a = array([[10,20,30],[40,50,60],[70,80,90]])
>>> append(a,[[15,15,15]],axis=0)
array([[10, 20, 30],
[40, 50, 60],
[70, 80, 90],
[15, 15, 15]])
>>> append(a,[[15],[15],[15]],axis=1)
array([[10, 20, 30, 15],
[40, 50, 60, 15],
[70, 80, 90, 15]])

See also: insert, delete, concatenate

apply_along_axis()

numpy.apply_along_axis(func1d, axis, arr, *args)

Apply function to 1-D slices along the given axis.

Execute `func1d(a[i],*args)` where `func1d` takes 1-D arrays, `a` is
the input array, and `i` is an integer that varies in order to apply the
function along the given axis for each 1-D subarray in `a`.

Parameters
----------
func1d : function
    This function should be able to take 1-D arrays. It is applied to 1-D
    slices of `a` along the specified axis.
axis : integer
    Axis along which `func1d` is applied.
a : ndarray
    Input array.
args : any
    Additional arguments to `func1d`.

Returns
-------
out : ndarray
    The output array. The shape of `out` is identical to the shape of `a`,
    except along the `axis` dimension, whose length is equal to the size
    of the return value of `func1d`.

See Also
--------
apply_over_axes : Apply a function repeatedly over multiple axes.

Examples
--------
>>> def my_func(a):
...     """Average first and last element of a 1-D array"""
...     return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])

>>> from numpy import *
>>> def myfunc(a):                                # function works on a 1d arrays, takes the average of the 1st an last element
...   return (a[0]+a[-1])/2
...
>>> b = array([[1,2,3],[4,5,6],[7,8,9]])
>>> apply_along_axis(myfunc,0,b)                 # apply myfunc to each column (axis=0) of b
array([4, 5, 6])
>>> apply_along_axis(myfunc,1,b)                # apply myfunc to each row (axis=1) of b
array([2, 5, 8])

See also: apply_over_axes, vectorize

apply_over_axes()

numpy.apply_over_axes(func, a, axes)

Apply a function repeatedly over multiple axes.

`func` is called as `res = func(a, axis)`, where `axis` is the first
element of `axes`.  The result `res` of the function call must have
either the same dimensions as `a` or one less dimension. If `res` has one
less dimension than `a`, a dimension is inserted before `axis`.
The call to `func` is then repeated for each axis in  `axes`,
with `res` as the first argument.

Parameters
----------
func : function
    This function must take two arguments, `func(a, axis)`.
a : ndarray
    Input array.
axes : array_like
    Axes over which `func` is applied, the elements must be
    integers.

Returns
-------
val : ndarray
    The output array. The number of dimensions is the same as `a`, but
    the shape can be different. This depends on whether `func` changes
    the shape of its output with respect to its input.

See Also
--------
apply_along_axis :
    Apply a function to 1-D slices of an array along the given axis.

Examples
--------
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
<BLANKLINE>
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

Sum over axes 0 and 2. The result has same number of dimensions
as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],
        [ 92],
        [124]]])

>>> from numpy import *
>>> a = arange(24).reshape(2,3,4)         # a has 3 axes: 0,1 and 2
>>> a
array([[[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> apply_over_axes(sum, a, [0,2])        # sum over all axes except axis=1, result has same shape as original
array([[[ 60],
[ 92],
[124]]])

See also: apply_along_axis, vectorize

arange()

numpy.arange(...)

arange([start,] stop[, step,], dtype=None)

Return evenly spaced values within a given interval.

Values are generated within the half-open interval ``[start, stop)``
(in other words, the interval including `start` but excluding `stop`).
For integer arguments the function is equivalent to the Python built-in
`range <http://docs.python.org/lib/built-in-funcs.html>`_ function,
but returns a ndarray rather than a list.

Parameters
----------
start : number, optional
    Start of interval.  The interval includes this value.  The default
    start value is 0.
stop : number
    End of interval.  The interval does not include this value.
step : number, optional
    Spacing between values.  For any output `out`, this is the distance
    between two adjacent values, ``out[i+1] - out[i]``.  The default
    step size is 1.  If `step` is specified, `start` must also be given.
dtype : dtype
    The type of the output array.  If `dtype` is not given, infer the data
    type from the other input arguments.

Returns
-------
out : ndarray
    Array of evenly spaced values.

    For floating point arguments, the length of the result is
    ``ceil((stop - start)/step)``.  Because of floating point overflow,
    this rule may result in the last element of `out` being greater
    than `stop`.

See Also
--------
linspace : Evenly spaced numbers with careful handling of endpoints.
ogrid: Arrays of evenly spaced numbers in N-dimensions
mgrid: Grid-shaped arrays of evenly spaced numbers in N-dimensions

Examples
--------
>>> np.arange(3)
array([0, 1, 2])
>>> np.arange(3.0)
array([ 0.,  1.,  2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])
>>> np.arange(3,7,2)
array([3, 5])

>>> from numpy import *
>>> arange(3)
array([0, 1, 2])
>>> arange(3.0)
array([ 0.,  1.,  2.])
>>> arange(3, dtype=float)
array([ 0.,  1.,  2.])
>>> arange(3,10)                                 # start,stop
array([3, 4, 5, 6, 7, 8, 9])
>>> arange(3,10,2)                              # start,stop,step
array([3, 5, 7, 9])

See also: r_, linspace, logspace, mgrid, ogrid

arccos()

numpy.arccos(...)

y = arccos(x)

Trigonometric inverse cosine, element-wise.

The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``.

Parameters
----------
x : array_like
    `x`-coordinate on the unit circle.
    For real arguments, the domain is [-1, 1].

Returns
-------
angle : ndarray
    The angle of the ray intersecting the unit circle at the given
    `x`-coordinate in radians [0, pi]. If `x` is a scalar then a
    scalar is returned, otherwise an array of the same shape as `x`
    is returned.

See Also
--------
cos, arctan, arcsin

Notes
-----
`arccos` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `cos(z) = x`. The convention is to return the
angle `z` whose real part lies in `[0, pi]`.

For real-valued input data types, `arccos` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arccos` is a complex analytical function that
has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above
on the former and from below on the latter.

The inverse `cos` is also known as `acos` or cos^-1.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse trigonometric function",
       http://en.wikipedia.org/wiki/Arccos

Examples
--------
We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1])
array([ 0.        ,  3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-1, 1, num=100)
>>> plt.plot(x, np.arccos(x))
>>> plt.axis('tight')
>>> plt.show()

>>> from numpy import *
>>> arccos(array([0, 1]))
array([ 1.57079633,  0.        ])

See also: arcsin, arccosh, arctan, arctan2

arccosh()

numpy.arccosh(...)

y = arccosh(x)

Inverse hyperbolic cosine, elementwise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Array of the same shape and dtype as `x`.

Notes
-----
`arccosh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `cosh(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi, pi]` and the real part in
``[0, inf]``.

For real-valued input data types, `arccosh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arccosh` is a complex analytical function that
has a branch cut `[-inf, 1]` and is continuous from above on it.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
       http://en.wikipedia.org/wiki/Arccosh

Examples
--------
>>> np.arccosh([np.e, 10.0])
array([ 1.65745445,  2.99322285])

>>> from numpy import *
>>> arccosh(array([e, 10.0]))
array([ 1.65745445,  2.99322285])

See also: arccos, arcsinh, arctanh

arcsin()

numpy.arcsin(...)

y = arcsin(x)

Inverse sine elementwise.

Parameters
----------
x : array_like
  `y`-coordinate on the unit circle.

Returns
-------
angle : ndarray
  The angle of the ray intersecting the unit circle at the given
  `y`-coordinate in radians ``[-pi, pi]``. If `x` is a scalar then
  a scalar is returned, otherwise an array is returned.

See Also
--------
sin, arctan, arctan2

Notes
-----
`arcsin` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `sin(z) = x`. The convention is to return the
angle `z` whose real part lies in `[-pi/2, pi/2]`.

For real-valued input data types, `arcsin` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arcsin` is a complex analytical function that
has branch cuts `[-inf, -1]` and `[1, inf]` and is continuous from above
on the former and from below on the latter.

The inverse sine is also known as `asin` or ``sin^-1``.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse trigonometric function",
       http://en.wikipedia.org/wiki/Arcsin

Examples
--------
>>> np.arcsin(1)     # pi/2
1.5707963267948966
>>> np.arcsin(-1)    # -pi/2
-1.5707963267948966
>>> np.arcsin(0)
0.0

>>> from numpy import *
>>> arcsin(array([0, 1]))
array([ 0.        ,  1.57079633])

See also: arccos, arctan, arcsinh

arcsinh()

numpy.arcsinh(...)

y = arcsinh(x)

Inverse hyperbolic sine elementwise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Array of of the same shape as `x`.

Notes
-----
`arcsinh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `sinh(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi/2, pi/2]`.

For real-valued input data types, `arcsinh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
returns ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arccos` is a complex analytical function that
has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from
the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
       http://en.wikipedia.org/wiki/Arcsinh

Examples
--------
>>> np.arcsinh(np.array([np.e, 10.0]))
array([ 1.72538256,  2.99822295])

>>> from numpy import *
>>> arcsinh(array([e, 10.0]))
array([ 1.72538256,  2.99822295])

See also: arccosh, arcsin, arctanh

arctan()

numpy.arctan(...)

y = arctan(x)

Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if ``y = tan(x)`` then
``x = arctan(y)``.

Parameters
----------
x : array_like
    Input values.  `arctan` is applied to each element of `x`.

Returns
-------
out : ndarray
    Out has the same shape as `x`.  Its real part is
    in ``[-pi/2, pi/2]``. It is a scalar if `x` is a scalar.

See Also
--------
arctan2 : Calculate the arctan of y/x.

Notes
-----
`arctan` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `tan(z) = x`. The convention is to return the
angle `z` whose real part lies in `[-pi/2, pi/2]`.

For real-valued input data types, `arctan` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arctan` is a complex analytical function that
has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the
left on the former and from the right on the latter.

The inverse tangent is also known as `atan` or ``tan^-1``.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse trigonometric function",
       http://en.wikipedia.org/wiki/Arctan

Examples
--------
We expect the arctan of 0 to be 0, and of 1 to be :math:`\pi/4`:

>>> np.arctan([0, 1])
array([ 0.        ,  0.78539816])

>>> np.pi/4
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-10, 10)
>>> plt.plot(x, np.arctan(x))
>>> plt.axis('tight')
>>> plt.show()

>>> from numpy import *
>>> arctan(array([0, 1]))
array([ 0.        ,  0.78539816])

See also: arccos, arcsin, arctanh

arctan2()

numpy.arctan2(...)

y = arctan2(x1,x2)

Elementwise arc tangent of ``x1/x2`` choosing the quadrant correctly.

The quadrant (ie. branch) is chosen so that ``arctan2(x1, x2)``
is the signed angle in radians between the line segments
``(0,0) - (1,0)`` and ``(0,0) - (x2,x1)``. This function is defined
also for `x2` = 0.

`arctan2` is not defined for complex-valued arguments.

Parameters
----------
x1 : array_like, real-valued
    y-coordinates.
x2 : array_like, real-valued
    x-coordinates. `x2` must be broadcastable to match the shape of `x1`,
    or vice versa.

Returns
-------
angle : ndarray
    Array of angles in radians, in the range ``[-pi, pi]``.

See Also
--------
arctan, tan

Notes
-----
`arctan2` is identical to the `atan2` function of the underlying
C library. The following special values are defined in the C standard [2]:

====== ====== ================
`x1`   `x2`   `arctan2(x1,x2)`
====== ====== ================
+/- 0  +0     +/- 0
+/- 0  -0     +/- pi
 > 0   +/-inf +0 / +pi
 < 0   +/-inf -0 / -pi
+/-inf +inf   +/- (pi/4)
+/-inf -inf   +/- (3*pi/4)
====== ====== ================

Note that +0 and -0 are distinct floating point numbers.

References
----------
.. [1] Wikipedia, "atan2",
       http://en.wikipedia.org/wiki/Atan2
.. [2] ISO/IEC standard 9899:1999, "Programming language C", 1999.

Examples
--------
Consider four points in different quadrants:

>>> x = np.array([-1, +1, +1, -1])
>>> y = np.array([-1, -1, +1, +1])
>>> np.arctan2(y, x) * 180 / np.pi
array([-135.,  -45.,   45.,  135.])

Note the order of the parameters. `arctan2` is defined also when `x2` = 0
and at several other special points, obtaining values in
the range ``[-pi, pi]``:

>>> np.arctan2([1., -1.], [0., 0.])
array([ 1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf])
array([ 0.        ,  3.14159265,  0.78539816])

>>> from numpy import *
>>> arctan2(array([0, 1]), array([1, 0]))
array([ 0.        ,  1.57079633])

See also: arcsin, arccos, arctan, arctanh

arctanh()

numpy.arctanh(...)

y = arctanh(x)

Inverse hyperbolic tangent elementwise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Array of the same shape as `x`.

Notes
-----
`arctanh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that `tanh(z) = x`. The convention is to return the
`z` whose imaginary part lies in `[-pi/2, pi/2]`.

For real-valued input data types, `arctanh` always returns real output.
For each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `arctanh` is a complex analytical function that
has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from
above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Inverse hyperbolic function",
       http://en.wikipedia.org/wiki/Arctanh

Examples
--------
>>> np.arctanh([0, -0.5])
array([ 0.        , -0.54930614])

>>> from numpy import *
>>> arctanh(array([0, -0.5]))
array([ 0.        , -0.54930614])

See also: arcsinh, arccosh, arctan, arctan2

argmax()

numpy.argmax(a, axis=None)

Indices of the maximum values along an axis.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    By default, the index is into the flattened array, otherwise
    along the specified axis.

Returns
-------
index_array : ndarray, int
    Array of indices into the array.  It has the same shape as `a`,
    except with `axis` removed.

See Also
--------
argmin : Indices of the minimum values along an axis.
amax : The maximum value along a given axis.
unravel_index : Convert a flat index into an index tuple.

Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

ndarray.argmax(...)

a.argmax(axis=None, out=None)

Return indices of the maximum values along the given axis of `a`.

Parameters
----------
axis : int, optional
    Axis along which to operate.  By default flattened input is used.
out : ndarray, optional
    Alternative output array in which to place the result.  Must
    be of the same shape and buffer length as the expected output.

Returns
-------
index_array : ndarray
    An array of indices or single index value, or a reference to `out`
    if it was specified.

Examples
--------
>>> a = np.arange(6).reshape(2,3)
>>> a.argmax()
5
>>> a.argmax(0)
array([1, 1, 1])
>>> a.argmax(1)
array([2, 2])

>>> from numpy import *
>>> a = array([10,20,30])
>>> maxindex = a.argmax()
>>> a[maxindex]
30
>>> a = array([[10,50,30],[60,20,40]])
>>> maxindex = a.argmax()
>>> maxindex
3
>>> a.ravel()[maxindex]
60
>>> a.argmax(axis=0)                        # for each column: the row index of the maximum value
array([1, 0, 1])
>>> a.argmax(axis=1)                       # for each row: the column index of the maximum value
array([1, 0])
>>> argmax(a)                              # also exists, slower, default is axis=-1
array([1, 0])

See also: argmin, nan, min, max, maximum, minimum

argmin()

numpy.argmin(a, axis=None)

Return the indices of the minimum values along an axis.

See Also
--------
argmax : Similar function.  Please refer to `numpy.argmax` for detailed
    documentation.

ndarray.argmin(...)

a.argmin(axis=None, out=None)

Return indices of the minimum values along the given axis of `a`.

Refer to `numpy.ndarray.argmax` for detailed documentation.

>>> from numpy import *
>>> a = array([10,20,30])
>>> minindex = a.argmin()
>>> a[minindex]
10
>>> a = array([[10,50,30],[60,20,40]])
>>> minindex = a.argmin()
>>> minindex
0
>>> a.ravel()[minindex]
10
>>> a.argmin(axis=0)                           # for each column: the row index of the minimum value
array([0, 1, 0])
>>> a.argmin(axis=1)                           # for each row: the column index of the minimum value
array([0, 1])
>>> argmin(a)                                  #  also exists, slower, default is axis=-1
array([0, 1])

See also: argmax, nan, min, max, maximum, minimum

argsort()

numpy.argsort(a, axis=-1, kind='quicksort', order=None)

Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified
by the `kind` keyword. It returns an array of indices of the same shape as
`a` that index data along the given axis in sorted order.

Parameters
----------
a : array_like
    Array to sort.
axis : int, optional
    Axis along which to sort.  If not given, the flattened array is used.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
    Sorting algorithm.
order : list, optional
    When `a` is an array with fields defined, this argument specifies
    which fields to compare first, second, etc.  Not all fields need be
    specified.

Returns
-------
index_array : ndarray, int
    Array of indices that sort `a` along the specified axis.
    In other words, ``a[index_array]`` yields a sorted `a`.

See Also
--------
sort : Describes sorting algorithms used.
lexsort : Indirect stable sort with multiple keys.
ndarray.sort : Inplace sort.

Notes
-----
See `sort` for notes on the different sorting algorithms.

Examples
--------
One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
       [2, 2]])

>>> np.argsort(x, axis=0)
array([[0, 1],
       [1, 0]])

>>> np.argsort(x, axis=1)
array([[0, 1],
       [0, 1]])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
      dtype=[('x', '<i4'), ('y', '<i4')])

>>> np.argsort(x, order=('x','y'))
array([1, 0])

>>> np.argsort(x, order=('y','x'))
array([0, 1])

ndarray.argsort(...)

a.argsort(axis=-1, kind='quicksort', order=None)

Returns the indices that would sort this array.

Refer to `numpy.argsort` for full documentation.

See Also
--------
numpy.argsort : equivalent function

argsort(axis=-1, kind="quicksort")

>>> from numpy import *
>>> a = array([2,0,8,4,1])
>>> ind = a.argsort()               # indices of sorted array using quicksort (default)
>>> ind
array([1, 4, 0, 3, 2])
>>> a[ind]                          # same effect as a.sort()
array([0, 1, 2, 4, 8])
>>> ind = a.argsort(kind='merge')   # algorithm options are 'quicksort', 'mergesort' and 'heapsort'
>>> a = array([[8,4,1],[2,0,9]])
>>> ind = a.argsort(axis=0)         # sorts on columns. NOT the same as a.sort(axis=1)
>>> ind
array([[1, 1, 0],
[0, 0, 1]])
>>> a[ind,[[0,1,2],[0,1,2]]]        # 2-D arrays need fancy indexing if you want to sort them.
array([[2, 0, 1],
[8, 4, 9]])
>>> ind = a.argsort(axis=1)         # sort along rows. Can use a.argsort(axis=-1) for last axis.
>>> ind
array([[2, 1, 0],
[1, 0, 2]])
>>> a = ones(17)
>>> a.argsort()                     # quicksort doesn't preserve original order.
array([ 0, 14, 13, 12, 11, 10,  9, 15,  8,  6,  5,  4,  3,  2,  1,  7, 16])
>>> a.argsort(kind="mergesort")     # mergesort preserves order when possible. It is a stable sort.
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])
>>> ind = argsort(a)                # there is a functional form

See also: lexsort, sort

argwhere()

numpy.argwhere(a)

Find the indices of array elements that are non-zero, grouped by element.

Parameters
----------
a : array_like
    Input data.

Returns
-------
index_array : ndarray
    Indices of elements that are non-zero. Indices are grouped by element.

See Also
--------
where, nonzero

Notes
-----
``np.argwhere(a)`` is the same as ``np.transpose(np.nonzero(a))``.

The output of ``argwhere`` is not suitable for indexing arrays.
For this purpose use ``where(a)`` instead.

Examples
--------
>>> x = np.arange(6).reshape(2,3)
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.argwhere(x>1)
array([[0, 2],
       [1, 0],
       [1, 1],
       [1, 2]])

around()

numpy.around(a, decimals=0, out=None)

Evenly round to the given number of decimals.

Parameters
----------
a : array_like
    Input data.
decimals : int, optional
    Number of decimal places to round to (default: 0).  If
    decimals is negative, it specifies the number of positions to
    the left of the decimal point.
out : ndarray, optional
    Alternative output array in which to place the result. It must have
    the same shape as the expected output, but the type of the output
    values will be cast if necessary.

Returns
-------
rounded_array : ndarray
    An array of the same type as `a`, containing the rounded values.
    Unless `out` was specified, a new array is created.  A reference to
    the result is returned.

    The real and imaginary parts of complex numbers are rounded
    separately.  The result of rounding a float is a float.

See Also
--------
ndarray.round : equivalent method

Notes
-----
For values exactly halfway between rounded decimal values, Numpy
rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,
-0.5 and 0.5 round to 0.0, etc. Results may also be surprising due
to the inexact representation of decimal fractions in the IEEE
floating point standard [1]_ and errors introduced when scaling
by powers of ten.

References
----------
.. [1] "Lecture Notes on the Status of  IEEE 754", William Kahan,
       http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
.. [2] "How Futile are Mindless Assessments of
       Roundoff in Floating-Point Computation?", William Kahan,
       http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

Examples
--------
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5])
array([ 0.,  2.,  2.,  4.,  4.])
>>> np.around([1,2,3,11], decimals=1)
array([ 1,  2,  3, 11])
>>> np.around([1,2,3,11], decimals=-1)
array([ 0,  0,  0, 10])

array()

numpy.array(...)

array(object, dtype=None, copy=True, order=None, subok=True, ndmin=True)

Create an array.

Parameters
----------
object : array_like
    An array, any object exposing the array interface, an
    object whose __array__ method returns an array, or any
    (nested) sequence.
dtype : data-type, optional
    The desired data-type for the array.  If not given, then
    the type will be determined as the minimum type required
    to hold the objects in the sequence.  This argument can only
    be used to 'upcast' the array.  For downcasting, use the
    .astype(t) method.
copy : bool, optional
    If true (default), then the object is copied.  Otherwise, a copy
    will only be made if __array__ returns a copy, if obj is a
    nested sequence, or if a copy is needed to satisfy any of the other
    requirements (`dtype`, `order`, etc.).
order : {'C', 'F', 'A'}, optional
    Specify the order of the array.  If order is 'C' (default), then the
    array will be in C-contiguous order (last-index varies the
    fastest).  If order is 'F', then the returned array
    will be in Fortran-contiguous order (first-index varies the
    fastest).  If order is 'A', then the returned array may
    be in any order (either C-, Fortran-contiguous, or even
    discontiguous).
subok : bool, optional
    If True, then sub-classes will be passed-through, otherwise
    the returned array will be forced to be a base-class array.
ndmin : int, optional
    Specifies the minimum number of dimensions that the resulting
    array should have.  Ones will be pre-pended to the shape as
    needed to meet this requirement.

Examples
--------
>>> np.array([1, 2, 3])
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0])
array([ 1.,  2.,  3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]])
array([[1, 2],
       [3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2)
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex)
array([ 1.+0.j,  2.+0.j,  3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')])
>>> x['a']
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4'))
array([[1, 2],
       [3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True)
matrix([[1, 2],
        [3, 4]])

numpy.core.records.array(obj, dtype=None, shape=None, offset=0, strides=None, formats=None, names=None, titles=None, aligned=False, byteorder=None, copy=True)

Construct a record array from a wide-variety of objects.

>>> from numpy import *
>>> array([1,2,3])                                                                         # conversion from a list to an array
array([1, 2, 3])
>>> array([1,2,3], dtype=complex)                                                          # output type is specified
array([ 1.+0.j,  2.+0.j,  3.+0.j])
>>> array(1, copy=0, subok=1, ndmin=1)                                                     # basically equivalent to atleast_1d
array([1])
>>> array(1, copy=0, subok=1, ndmin=2)                                                     # basically equivalent to atleast_2d
array([[1]])
>>> array(1, subok=1, ndmin=2)                                                             # like atleast_2d but always makes a copy
array([[1]])
>>> mydescriptor = {'names': ('gender','age','weight'), 'formats': ('S1', 'f4', 'f4')}     # one way of specifying the data type
>>> a = array([('M',64.0,75.0),('F',25.0,60.0)], dtype=mydescriptor)                       # recarray
>>> print a
[('M', 64.0, 75.0) ('F', 25.0, 60.0)]
>>> a['weight']
array([ 75.,  60.], dtype=float32)
>>> a.dtype.names                                                                          # Access to the ordered field names
('gender','age','weight')
>>> mydescriptor = [('age',int16),('Nchildren',int8),('weight',float32)]                   # another way of specifying the data type
>>> a = array([(64,2,75.0),(25,0,60.0)], dtype=mydescriptor)
>>> a['Nchildren']
array([2, 0], dtype=int8)
>>> mydescriptor = dtype([('x', 'f4'),('y', 'f4'),                                         # nested recarray
...     ('nested', [('i', 'i2'),('j','i2')])])
>>> array([(1.0, 2.0, (1,2))], dtype=mydescriptor)                                         # input one row
array([(1.0, 2.0, (1, 2))],
dtype=[('x', '<f4'), ('y', '<f4'), ('nested', [('i', '<i2'), ('j', '<i2')])])
>>> array([(1.0, 2.0, (1,2)), (2.1, 3.2, (3,2))], dtype=mydescriptor)                      # input two rows
array([(1.0, 2.0, (1, 2)), (2.0999999046325684, 3.2000000476837158, (3, 2))],
dtype=[('x', '<f4'), ('y', '<f4'), ('nested', [('i', '<i2'), ('j', '<i2')])])
>>> a=array([(1.0, 2.0, (1,2)), (2.1, 3.2, (3,2))], dtype=mydescriptor)                    # getting some columns
>>> a['x']                                                                                 # a plain column
array([ 1.       ,  2.0999999], dtype=float32)
>>> a['nested']                                                                            # a nested column
array([(1, 2), (3, 2)],
dtype=[('i', '<i2'), ('j', '<i2')])
>>> a['nested']['i']                                                                       # a plain column inside a nested column
>>> mydescriptor = dtype([('x', 'f4'),('y', 'f4'),                                         # nested recarray
...     ('nested', [('i', 'i2'),('j','i2')])])
>>> array([(1.0, 2.0, (1,2))], dtype=mydescriptor)                                         # input one row
array([(1.0, 2.0, (1, 2))],
dtype=[('x', '<f4'), ('y', '<f4'), ('nested', [('i', '<i2'), ('j', '<i2')])])
>>> array([(1.0, 2.0, (1,2)), (2.1, 3.2, (3,2))], dtype=mydescriptor)                      # input two rows
array([(1.0, 2.0, (1, 2)), (2.0999999046325684, 3.2000000476837158, (3, 2))],
dtype=[('x', '<f4'), ('y', '<f4'), ('nested', [('i', '<i2'), ('j', '<i2')])])
>>> a=array([(1.0, 2.0, (1,2)), (2.1, 3.2, (3,2))], dtype=mydescriptor)                    # getting some columns
>>> a['x']                                                                                 # a plain column
array([ 1.       ,  2.0999999], dtype=float32)
>>> a['nested']                                                                            # a nested column
array([(1, 2), (3, 2)],
dtype=[('i', '<i2'), ('j', '<i2')])
>>> a['nested']['i']                                                                       # a plain column inside a nested column
array([1, 3], dtype=int16)

See also: dtype, mat, asarray

array2string()

numpy.array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix="", style=<built-in function repr>)

Return a string representation of an array.

Parameters
----------
a : ndarray
    Input array.
max_line_width : int, optional
    The maximum number of columns the string should span. Newline
    characters splits the string appropriately after array elements.
precision : int, optional
    Floating point precision. Default is the current printing
    precision (usually 8), which can be altered using `set_printoptions`.
suppress_small : bool, optional
    Represent very small numbers as zero.
separator : string, optional
    Inserted between elements.
prefix : string, optional
    An array is typically printed as::

      'prefix(' + array2string(a) + ')'

    The length of the prefix string is used to align the
    output correctly.
style : function, optional
    Callable.

See Also
--------
array_str, array_repr, set_printoptions

Examples
--------
>>> x = np.array([1e-16,1,2,3])
>>> print np.array2string(x, precision=2, separator=',',
...                       suppress_small=True)
[ 0., 1., 2., 3.]

array_equal()

numpy.array_equal(a1, a2)

True if two arrays have the same shape and elements, False otherwise.

Parameters
----------
a1 : array_like
    First input array.
a2 : array_like
    Second input array.

Returns
-------
b : {True, False}
    Returns True if the arrays are equal.

Examples
--------
>>> np.array_equal([1,2],[1,2])
True
>>> np.array_equal(np.array([1,2]),np.array([1,2]))
True
>>> np.array_equal([1,2],[1,2,3])
False
>>> np.array_equal([1,2],[1,4])
False

array_equiv()

numpy.array_equiv(a1, a2)

Returns True if input arrays are shape consistent and all elements equal.

Parameters
----------
a1 : array_like
    Input array.
a2 : array_like
    Input array.

Returns
-------
out : bool
    True if equivalent, False otherwise.

Examples
--------
>>> np.array_equiv([1,2],[1,2])
>>> True
>>> np.array_equiv([1,2],[1,3])
>>> False
>>> np.array_equiv([1,2], [[1,2],[1,2]])
>>> True
>>> np.array_equiv([1,2], [[1,2],[1,3]])
>>> False

array_repr()

numpy.array_repr(arr, max_line_width=None, precision=None, suppress_small=None)

Return the string representation of an array.

Parameters
----------
arr : ndarray
  Input array.
max_line_width : int
  The maximum number of columns the string should span. Newline
  characters splits the string appropriately after array elements.
precision : int
  Floating point precision.
suppress_small : bool
  Represent very small numbers as zero.

Returns
-------
string : str
  The string representation of an array.


Examples
--------
>>> np.array_repr(np.array([1,2]))
'array([1, 2])'
>>> np.array_repr(np.ma.array([0.]))
'MaskedArray([ 0.])'
>>> np.array_repr(np.array([], np.int32))
'array([], dtype=int32)'

array_split()

numpy.array_split(ary, indices_or_sections, axis=0)

Split an array into multiple sub-arrays of equal or near-equal size.

Please refer to the `numpy.split` documentation.  The only difference
between these functions is that `array_split` allows `indices_or_sections`
to be an integer that does *not* equally divide the axis.

See Also
--------
numpy.split : Split array into multiple sub-arrays.

Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
    [array([ 0.,  1.,  2.]), array([ 3.,  4.,  5.]), array([ 6.,  7.])]

>>> from numpy import *
>>> a = array([[1,2,3,4],[5,6,7,8]])
>>> array_split(a,2,axis=0)                            # split a in 2 parts. row-wise
[array([[1, 2, 3, 4]]), array([[5, 6, 7, 8]])]
>>> array_split(a,4,axis=1)                            # split a in 4 parts, column-wise
[array([[1],
[5]]), array([[2],
[6]]), array([[3],
[7]]), array([[4],
[8]])]
>>> array_split(a,3,axis=1)                          # impossible to split in 3 equal parts -> first part(s) are bigger
[array([[1, 2],
[5, 6]]), array([[3],
[7]]), array([[4],
[8]])]
>>> array_split(a,[2,3],axis=1)                      # make a split before the 2nd and the 3rd column
[array([[1, 2],
[5, 6]]), array([[3],
[7]]), array([[4],
[8]])]

See also: dsplit, hsplit, vsplit, split, concatenate

array_str()

numpy.array_str(a, max_line_width=None, precision=None, suppress_small=None)

Return a string representation of an array.

Parameters
----------
a : ndarray
    Input array.
max_line_width : int, optional
    Inserts newlines if text is longer than `max_line_width`.
precision : int, optional
    If `a` is float, `precision` sets loating point precision.
suppress_small : boolean, optional
    Represent very small numbers as zero.

See Also
--------
array2string, array_repr

Examples
--------
>>> np.array_str(np.arange(3))
>>> '[0 1 2]'

arrayrange

Synonym for arange()

See arange

asanyarray()

numpy.asanyarray(a, dtype=None, order=None)

Convert the input to a ndarray, but pass ndarray subclasses through.

Parameters
----------
a : array_like
    Input data, in any form that can be converted to an array.  This
    includes scalars, lists, lists of tuples, tuples, tuples of tuples,
    tuples of lists and ndarrays.
dtype : data-type, optional
    By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
    Whether to use row-major ('C') or column-major ('F') memory
    representation.  Defaults to 'C'.

Returns
-------
out : ndarray or an ndarray subclass
    Array interpretation of `a`.  If `a` is an ndarray or a subclass
    of ndarray, it is returned as-is and no copy is performed.

See Also
--------
asarray : Similar function which always returns ndarrays.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
                 memory order.
asarray_chkfinite : Similar function which checks input for NaNs and Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
               positions.

Examples
--------
Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray(a)
array([1, 2])

Instances of `ndarray` subclasses are passed through as-is:

>>> a = np.matrix([1, 2])
>>> np.asanyarray(a) is a
True

>>> from numpy import *
>>> a = array([[1,2],[5,8]])
>>> a
array([[1, 2],
[5, 8]])
>>> m = matrix('1 2; 5 8')
>>> m
matrix([[1, 2],
[5, 8]])
>>> asanyarray(a)         # the array a is returned unmodified
array([[1, 2],
[5, 8]])
>>> asanyarray(m)         # the matrix m is returned unmodified
matrix([[1, 2],
[5, 8]])
>>> asanyarray([1,2,3])   # a new array is constructed from the list
array([1, 2, 3])

See also: asmatrix, asarray, array, mat

asarray()

numpy.asarray(a, dtype=None, order=None)

Convert the input to an array.

Parameters
----------
a : array_like
    Input data, in any form that can be converted to an array.  This
    includes lists, lists of tuples, tuples, tuples of tuples, tuples
    of lists and ndarrays.
dtype : data-type, optional
    By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
    Whether to use row-major ('C') or column-major ('FORTRAN') memory
    representation.  Defaults to 'C'.

Returns
-------
out : ndarray
    Array interpretation of `a`.  No copy is performed if the input
    is already an ndarray.  If `a` is a subclass of ndarray, a base
    class ndarray is returned.

See Also
--------
asanyarray : Similar function which passes through subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
                 memory order.
asarray_chkfinite : Similar function which checks input for NaNs and Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
               positions.

Examples
--------
Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

>>> from numpy import *
>>> m = matrix('1 2; 5 8')
>>> m
matrix([[1, 2],
[5, 8]])
>>> a = asarray(m)           # a is array type with same contents as m -- data is not copied
>>> a
array([[1, 2],
[5, 8]])
>>> m[0,0] = -99
>>> m
matrix([[-99,   2],
[  5,   8]])
>>> a                        # no copy was made, so modifying m modifies a, and vice versa
array([[-99,   2],
[  5,   8]])

See also: asmatrix, array, matrix, mat

asarray_chkfinite()

numpy.asarray_chkfinite(a)

Convert the input to an array, checking for NaNs or Infs.

Parameters
----------
a : array_like
    Input data, in any form that can be converted to an array.  This
    includes lists, lists of tuples, tuples, tuples of tuples, tuples
    of lists and ndarrays.  Success requires no NaNs or Infs.
dtype : data-type, optional
    By default, the data-type is inferred from the input data.
order : {'C', 'F'}, optional
    Whether to use row-major ('C') or column-major ('FORTRAN') memory
    representation.  Defaults to 'C'.

Returns
-------
out : ndarray
    Array interpretation of `a`.  No copy is performed if the input
    is already an ndarray.  If `a` is a subclass of ndarray, a base
    class ndarray is returned.

Raises
------
ValueError
    Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity).

See Also
--------
asarray : Create and array.
asanyarray : Similar function which passes through subclasses.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asfortranarray : Convert input to an ndarray with column-major
                 memory order.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
               positions.

Examples
--------
Convert a list into an array.  If all elements are finite
``asarray_chkfinite`` is identical to ``asarray``.

>>> a = [1, 2]
>>> np.asarray_chkfinite(a)
array([1, 2])

Raises ValueError if array_like contains Nans or Infs.

>>> a = [1, 2, np.inf]
>>> try:
...     np.asarray_chkfinite(a)
... except ValueError:
...     print 'ValueError'
...
ValueError

ascontiguousarray()

numpy.ascontiguousarray(a, dtype=None)

Return a contiguous array in memory (C order).

Parameters
----------
a : array_like
    Input array.
dtype : string
    Type code of returned array.

Returns
-------
out : ndarray
    Contiguous array of same shape and content as `a` with type `dtype`.

asfarray()

numpy.asfarray(a, dtype=<type 'numpy.float64'>)

Return an array converted to float type.

Parameters
----------
a : array_like
    Input array.
dtype : string or dtype object, optional
    Float type code to coerce input array `a`.  If one of the 'int' dtype,
    it is replaced with float64.

Returns
-------
out : ndarray, float
    Input `a` as a float ndarray.

Examples
--------
>>> np.asfarray([2, 3])
array([ 2.,  3.])
>>> np.asfarray([2, 3], dtype='float')
array([ 2.,  3.])
>>> np.asfarray([2, 3], dtype='int8')
array([ 2.,  3.])

asfortranarray()

numpy.asfortranarray(a, dtype=None)

Return an array laid out in Fortran-order in memory.

Parameters
----------
a : array_like
    Input array.
dtype : data-type, optional
    By default, the data-type is inferred from the input data.

Returns
-------
out : ndarray
    Array interpretation of `a` in Fortran (column-order).

See Also
--------
asarray : Similar function which always returns ndarrays.
ascontiguousarray : Convert input to a contiguous array.
asfarray : Convert input to a floating point ndarray.
asanyarray : Convert input to an ndarray with either row or
    column-major memory order.
asarray_chkfinite : Similar function which checks input for NaNs and Infs.
fromiter : Create an array from an iterator.
fromfunction : Construct an array by executing a function on grid
               positions.

asmatrix()

numpy.asmatrix(data, dtype=None)

Interpret the input as a matrix.

Unlike `matrix`, `asmatrix` does not make a copy if the input is already
a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.

Parameters
----------
data : array_like
    Input data.

Returns
-------
mat : matrix
    `data` interpreted as a matrix.

Examples
--------
>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
        [3, 4]])

>>> from numpy import *
>>> a = array([[1,2],[5,8]])
>>> a
array([[1, 2],
[5, 8]])
>>> m = asmatrix(a)        # m is matrix type with same contents as a -- data is not copied
>>> m
matrix([[1, 2],
[5, 8]])
>>> a[0,0] = -99
>>> a
array([[-99,   2],
[  5,   8]])
>>> m                      # no copy was made so modifying a modifies m, and vice versa
matrix([[-99,   2],
[  5,   8]])

See also: asarray, array, matrix, mat

asscalar()

numpy.asscalar(a)

Convert an array of size 1 to its scalar equivalent.

Parameters
----------
a : ndarray
    Input array.

Returns
-------
out : scalar
    Scalar of size 1 array.

Examples
--------
>>> np.asscalar(np.array([24]))
>>> 24

astype()

ndarray.astype(...)

a.astype(t)

Copy of the array, cast to a specified type.

Parameters
----------
t : string or dtype
    Typecode or data-type to which the array is cast.

Examples
--------
>>> x = np.array([1, 2, 2.5])
>>> x
array([ 1. ,  2. ,  2.5])

>>> x.astype(int)
array([1, 2, 2])

>>> from numpy import *
>>> x = array([1,2,3])
>>> y = x.astype(float64)                  # convert from int32 to float64
>>> type(y[0])
<type 'numpy.float64'>
>>> x.astype(None)                         # None implies converting to the default (float64)
array([1., 2., 3.])

See also: cast, dtype, ceil, floor, round_, fix

atleast_1d()

numpy.atleast_1d(*arys)

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.

Parameters
----------
array1, array2, ... : array_like
    One or more input arrays.

Returns
-------
ret : ndarray
    An array, or sequence of arrays, each with ``a.ndim >= 1``.
    Copies are made only if necessary.

See Also
--------
atleast_2d, atleast_3d

Examples
--------
>>> np.atleast_1d(1.0)
array([ 1.])

>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0.,  1.,  2.],
       [ 3.,  4.,  5.],
       [ 6.,  7.,  8.]])
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]

>>> from numpy import *
>>> a = 1                                       # 0-d array
>>> b = array([2,3])                            # 1-d array
>>> c = array([[4,5],[6,7]])                    # 2-d array
>>> d = arange(8).reshape(2,2,2)                # 3-d array
>>> d
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> atleast_1d(a,b,c,d)                        # all output arrays have dim >= 1
[array([1]), array([2, 3]), array([[4, 5],
[6, 7]]), array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])]

See also: atleast_2d, atleast_3d, newaxis, expand_dims

atleast_2d()

numpy.atleast_2d(*arys)

View inputs as arrays with at least two dimensions.

Parameters
----------
array1, array2, ... : array_like
    One or more array-like sequences.  Non-array inputs are converted
    to arrays.  Arrays that already have two or more dimensions are
    preserved.

Returns
-------
res, res2, ... : ndarray
    An array, or tuple of arrays, each with ``a.ndim >= 2``.
    Copies are avoided where possible, and views with two or more
    dimensions are returned.

See Also
--------
atleast_1d, atleast_3d

Examples
--------
>>> numpy.atleast_2d(3.0)
array([[ 3.]])

>>> x = numpy.arange(3.0)
>>> numpy.atleast_2d(x)
array([[ 0.,  1.,  2.]])
>>> numpy.atleast_2d(x).base is x
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

>>> from numpy import *
>>> a = 1                                               # 0-d array
>>> b = array([2,3])                                    # 1-d array
>>> c = array([[4,5],[6,7]])                            # 2-d array
>>> d = arange(8).reshape(2,2,2)                        # 3-d array
>>> d
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> atleast_2d(a,b,c,d)                                # all output arrays have dim >= 2
[array([[1]]), array([[2, 3]]), array([[4, 5],
[6, 7]]), array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])]

See also: atleast_1d, atleast_3d, newaxis, expand_dims

atleast_3d()

numpy.atleast_3d(*arys)

View inputs as arrays with at least three dimensions.

Parameters
----------
array1, array2, ... : array_like
    One or more array-like sequences.  Non-array inputs are converted
    to arrays. Arrays that already have three or more dimensions are
    preserved.

Returns
-------
res1, res2, ... : ndarray
    An array, or tuple of arrays, each with ``a.ndim >= 3``.
    Copies are avoided where possible, and views with three or more
    dimensions are returned.  For example, a one-dimensional array of
    shape ``N`` becomes a view of shape ``(1, N, 1)``.  An ``(M, N)``
    array becomes a view of shape ``(N, M, 1)``.

See Also
--------
numpy.atleast_1d, numpy.atleast_2d

Examples
--------
>>> numpy.atleast_3d(3.0)
array([[[ 3.]]])

>>> x = numpy.arange(3.0)
>>> numpy.atleast_3d(x).shape
(1, 3, 1)

>>> x = numpy.arange(12.0).reshape(4,3)
>>> numpy.atleast_3d(x).shape
(4, 3, 1)
>>> numpy.atleast_3d(x).base is x
True

>>> for arr in np.atleast_3d(1, [1, 2], [[1, 2]]): print arr, "\n"
...
[[[1]]]

[[[1]
  [2]]]

[[[1]
  [2]]]

>>> from numpy import *
>>> a = 1                                       # 0-d array
>>> b = array([2,3])                            # 1-d array
>>> c = array([[4,5],[6,7]])                    # 2-d array
>>> d = arange(8).reshape(2,2,2)                # 3-d array
>>> d
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> atleast_3d(a,b,c,d)                       # all output arrays have dim >= 3
[array([[[1]]]), array([[[2],
[3]]]), array([[[4],
[5]],
[[6],
[7]]]), array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])]

See also: atleast_1d, atleast_2d, newaxis, expand_dims

average()

numpy.average(a, axis=None, weights=None, returned=False)

Return the weighted average of array over the specified axis.

Parameters
----------
a : array_like
    Data to be averaged.
axis : int, optional
    Axis along which to average `a`. If `None`, averaging is done over the
    entire array irrespective of its shape.
weights : array_like, optional
    The importance that each datum has in the computation of the average.
    The weights array can either be 1-D (in which case its length must be
    the size of `a` along the given axis) or of the same shape as `a`.
    If `weights=None`, then all data in `a` are assumed to have a
    weight equal to one.
returned : bool, optional
    Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`)
    is returned, otherwise only the average is returned.  Note that
    if `weights=None`, `sum_of_weights` is equivalent to the number of
    elements over which the average is taken.

Returns
-------
average, [sum_of_weights] : {array_type, double}
    Return the average along the specified axis. When returned is `True`,
    return a tuple with the average as the first element and the sum
    of the weights as the second element. The return type is `Float`
    if `a` is of integer type, otherwise it is of the same type as `a`.
    `sum_of_weights` is of the same type as `average`.

Raises
------
ZeroDivisionError
    When all weights along axis are zero. See `numpy.ma.average` for a
    version robust to this type of error.
TypeError
    When the length of 1D `weights` is not the same as the shape of `a`
    along axis.

See Also
--------
ma.average : average for masked arrays

Examples
--------
>>> data = range(1,5)
>>> data
[1, 2, 3, 4]
>>> np.average(data)
2.5
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0

>>> from numpy import *
>>> a = array([1,2,3,4,5])
>>> w = array([0.1, 0.2, 0.5, 0.2, 0.2])             # weights, not necessarily normalized
>>> average(a)                                       # plain mean value
3.0
>>> average(a,weights=w)                            # weighted average
3.1666666666666665
>>> average(a,weights=w,returned=True)              # output = weighted average, sum of weights
(3.1666666666666665, 1.2)

See also: mean, median

bartlett()

numpy.bartlett(M)

Return the Bartlett window.

The Bartlett window is very similar to a triangular window, except
that the end points are at zero.  It is often used in signal
processing for tapering a signal, without generating too much
ripple in the frequency domain.

Parameters
----------
M : int
    Number of points in the output window. If zero or less, an
    empty array is returned.

Returns
-------
out : array
    The triangular window, normalized to one (the value one
    appears only if the number of samples is odd), with the first
    and last samples equal to zero.

See Also
--------
blackman, hamming, hanning, kaiser

Notes
-----
The Bartlett window is defined as

.. math:: w(n) = \frac{2}{M-1} \left(
          \frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
          \right)

Most references to the Bartlett window come from the signal
processing literature, where it is used as one of many windowing
functions for smoothing values.  Note that convolution with this
window produces linear interpolation.  It is also known as an
apodization (which means"removing the foot", i.e. smoothing
discontinuities at the beginning and end of the sampled signal) or
tapering function. The fourier transform of the Bartlett is the product
of two sinc functions.
Note the excellent discussion in Kanasewich.

References
----------
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
       Biometrika 37, 1-16, 1950.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
       The University of Alberta Press, 1975, pp. 109-110.
.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
       Processing", Prentice-Hall, 1999, pp. 468-471.
.. [4] Wikipedia, "Window function",
       http://en.wikipedia.org/wiki/Window_function
.. [5] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
       "Numerical Recipes", Cambridge University Press, 1986, page 429.


Examples
--------
>>> np.bartlett(12)
array([ 0.        ,  0.18181818,  0.36363636,  0.54545455,  0.72727273,
        0.90909091,  0.90909091,  0.72727273,  0.54545455,  0.36363636,
        0.18181818,  0.        ])

Plot the window and its frequency response (requires SciPy and matplotlib):

>>> from numpy import clip, log10, array, bartlett
>>> from numpy.fft import fft
>>> import matplotlib.pyplot as plt

>>> window = bartlett(51)
>>> plt.plot(window)
>>> plt.title("Bartlett window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.show()

>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = linspace(-0.5,0.5,len(A))
>>> response = 20*log10(mag)
>>> response = clip(response,-100,100)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of Bartlett window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()

base_repr()

numpy.base_repr(number, base=2, padding=0)

Return a string representation of a number in the given base system.

Parameters
----------
number : scalar
    The value to convert. Only positive values are handled.
base : int
    Convert `number` to the `base` number system. The valid range is 2-36,
    the default value is 2.
padding : int, optional
    Number of zeros padded on the left.

Returns
-------
out : str
    String representation of `number` in `base` system.

See Also
--------
binary_repr : Faster version of `base_repr` for base 2 that also handles
    negative numbers.

Examples
--------
>>> np.base_repr(3, 5)
'3'
>>> np.base_repr(6, 5)
'11'
>>> np.base_repr(7, 5, padding=3)
'00012'

bench()

numpy.bench(self, label='fast', verbose=1, extra_argv=None)

Run benchmarks for module using nose

Parameters
----------
label : {'fast', 'full', '', attribute identifer}
    Identifies the benchmarks to run.  This can be a string to
    pass to the nosetests executable with the '-A' option, or one of
    several special values.
    Special values are:
        'fast' - the default - which corresponds to nosetests -A option
                 of 'not slow'.
        'full' - fast (as above) and slow benchmarks as in the
                 no -A option to nosetests - same as ''
    None or '' - run all benchmarks
    attribute_identifier - string passed directly to nosetests as '-A'
verbose : integer
    verbosity value for test outputs, 1-10
extra_argv : list
    List with any extra args to pass to nosetests

beta()

numpy.random.beta(...)

beta(a, b, size=None)

The Beta distribution over ``[0, 1]``.

The Beta distribution is a special case of the Dirichlet distribution,
and is related to the Gamma distribution.  It has the probability
distribution function

.. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                 (1 - x)^{\beta - 1},

where the normalisation, B, is the beta function,

.. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                             (1 - t)^{\beta - 1} dt.

It is often seen in Bayesian inference and order statistics.

Parameters
----------
a : float
    Alpha, non-negative.
b : float
    Beta, non-negative.
size : tuple of ints, optional
    The number of samples to draw.  The ouput is packed according to
    the size given.

Returns
-------
out : ndarray
    Array of the given shape, containing values drawn from a
    Beta distribution.

>>> from numpy import *
>>> from numpy.random import *
>>> beta(a=1,b=10,size=(2,2))                  # Beta distribution alpha=1, beta=10
array([[ 0.02571091,  0.04973536],
[ 0.04887027,  0.02382052]])

See also: seed

binary_repr()

numpy.binary_repr(num, width=None)

Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the
front. If width is given, the two's complement of the number is
returned, with respect to that width.

In a two's-complement system negative numbers are represented by the two's
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]_. A N-bit two's-complement
system can represent every integer in the range
:math:`-2^{N-1}` to :math:`+2^{N-1}-1`.

Parameters
----------
num : int
    Only an integer decimal number can be used.
width : int, optional
    The length of the returned string if `num` is positive, the length of
    the two's complement if `num` is negative.

Returns
-------
bin : str
    Binary representation of `num` or two's complement of `num`.

See Also
--------
base_repr

Notes
-----
`binary_repr` is equivalent to using `base_repr` with base 2, but about 25x
faster.

References
----------
.. [1] Wikipedia, "Two's complement",
    http://en.wikipedia.org/wiki/Two's_complement

Examples
--------
>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'

The two's complement is returned when the input number is negative and
width is specified:

>>> np.binary_repr(-3, width=4)
'1101'

>>> from numpy import *
>>> a = 25
>>> binary_repr(a)                              # binary representation of 25
'11001'
>>> b = float_(pi)                              # numpy float has extra functionality ...
>>> b.nbytes                                    # ... like the number of bytes it takes
8
>>> binary_repr(b.view('u8'))                   # view float number as an 8 byte integer, then get binary bitstring
'1010100010001000010110100011000'

bincount()

numpy.bincount(...)

bincount(x,weights=None)

Return the number of occurrences of each value in x.

x must be a list of non-negative integers.  The output, b[i],
represents the number of times that i is found in x.  If weights
is specified, every occurrence of i at a position p contributes
weights[p] instead of 1.

See also: histogram, digitize, unique.

>>> from numpy import *
>>> a = array([1,1,1,1,2,2,4,4,5,6,6,6])              # doesn't need to be sorted
>>> bincount(a)                                       # 0 occurs 0 times, 1 occurs 4 times, 2 occurs twice, 3 occurs 0 times, ...
array([0, 4, 2, 0, 2, 1, 3])
>>> a = array([5,4,4,2,2])
>>> w = array([0.1, 0.2, 0.1, 0.3, 0.5])
>>> bincount(a)                                      # 0 & 1 don't occur, 2 occurs twice, 3 doesn't occur, 4 occurs twice, 5 once
array([0, 0, 2, 0, 2, 1])
>>> bincount(a, weights=w)
array([ 0. ,  0. ,  0.8,  0. ,  0.3,  0.1])
>>> # 0 occurs 0 times -> result[0] = 0
>>> # 1 occurs 0 times -> result[1] = 0
>>> # 2 occurs at indices 3 & 4 -> result[2] = w[3] + w[4]
>>> # 3 occurs 0 times -> result[3] = 0
>>> # 4 occurs at indices 1 & 2 -> result[4] = w[1] + w[2]
>>> # 5 occurs at index 0  -> result[5] = w[0]

See also: histogram, digitize

binomial()

numpy.random.binomial(...)

binomial(n, p, size=None)

Draw samples from a binomial distribution.

Samples are drawn from a Binomial distribution with specified
parameters, n trials and p probability of success where
n an integer > 0 and p is in the interval [0,1]. (n may be
input as a float, but it is truncated to an integer in use)

Parameters
----------
n : float (but truncated to an integer)
        parameter, > 0.
p : float
        parameter, >= 0 and <=1.
size : {tuple, int}
    Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
    ``m * n * k`` samples are drawn.

Returns
-------
samples : {ndarray, scalar}
          where the values are all integers in  [0, n].

See Also
--------
scipy.stats.distributions.binom : probability density function,
    distribution or cumulative density function, etc.

Notes
-----
The probability density for the Binomial distribution is

.. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

where :math:`n` is the number of trials, :math:`p` is the probability
of success, and :math:`N` is the number of successes.

When estimating the standard error of a proportion in a population by
using a random sample, the normal distribution works well unless the
product p*n <=5, where p = population proportion estimate, and n =
number of samples, in which case the binomial distribution is used
instead. For example, a sample of 15 people shows 4 who are left
handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
so the binomial distribution should be used in this case.

References
----------
.. [1] Dalgaard, Peter, "Introductory Statistics with R",
       Springer-Verlag, 2002.
.. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
       Fifth Edition, 2002.
.. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
       and Quigley, 1972.
.. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
       Wolfram Web Resource.
       http://mathworld.wolfram.com/BinomialDistribution.html
.. [5] Wikipedia, "Binomial-distribution",
       http://en.wikipedia.org/wiki/Binomial_distribution

Examples
--------
Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial
>>> s = np.random.binomial(n, p, 1000)
# result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration
wells, each with an estimated probability of success of 0.1. All nine
wells fail. What is the probability of that happening?

Let's do 20,000 trials of the model, and count the number that
generate zero positive results.

>>> sum(np.random.binomial(9,0.1,20000)==0)/20000.
answer = 0.38885, or 38%.

>>> from numpy import *
>>> from numpy.random import *
>>> binomial(n=100,p=0.5,size=(2,3))    # binomial distribution n trials, p= success probability
array([[38, 50, 53],
[56, 48, 54]])
>>> from pylab import *                         # histogram plot example
>>> hist(binomial(100,0.5,(1000)), 20)

See also: random_sample, uniform, standard_normal, seed

bitwise_and()

numpy.bitwise_and(...)

y = bitwise_and(x1,x2)

Compute bit-wise AND of two arrays, element-wise.

When calculating the bit-wise AND between two elements, ``x`` and ``y``,
each element is first converted to its binary representation (which works
just like the decimal system, only now we're using 2 instead of 10):

.. math:: x = \sum_{i=0}^{W-1} a_i \cdot 2^i\\
          y = \sum_{i=0}^{W-1} b_i \cdot 2^i,

where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8),
and each :math:`a_i` and :math:`b_j` is either 0 or 1.  For example, 13
is represented as ``00001101``, which translates to
:math:`2^4 + 2^3 + 2`.

The bit-wise operator is the result of

.. math:: z = \sum_{i=0}^{i=W-1} (a_i \wedge b_i) \cdot 2^i,

where :math:`\wedge` is the AND operator, which yields one whenever
both :math:`a_i` and :math:`b_i` are 1.

Parameters
----------
x1, x2 : array_like
    Only integer types are handled (including booleans).

Returns
-------
out : array_like
    Result.

See Also
--------
bitwise_or, bitwise_xor
logical_and
binary_repr :
    Return the binary representation of the input number as a string.

Examples
--------
We've seen that 13 is represented by ``00001101``.  Similary, 17 is
represented by ``00010001``.  The bit-wise AND of 13 and 17 is
therefore ``000000001``, or 1:

>>> np.bitwise_and(13, 17)
1

>>> np.bitwise_and(14, 13)
12
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and([14,3], 13)
array([12,  1])

>>> np.bitwise_and([11,7], [4,25])
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([ 2,  4, 16])
>>> np.bitwise_and([True, True], [False, True])
array([False,  True], dtype=bool)

>>> from numpy import *
>>> bitwise_and(array([2,5,255]), array([4,4,4]))
array([0, 4, 4])
>>> bitwise_and(array([2,5,255,2147483647L],dtype=int32), array([4,4,4,2147483647L],dtype=int32))
array([         0,          4,          4, 2147483647])

See also: bitwise_or, bitwise_xor, logical_and

bitwise_not()

numpy.bitwise_not(...)

y = invert(x)

Compute bit-wise inversion, or bit-wise NOT, element-wise.

When calculating the bit-wise NOT of an element ``x``, each element is
first converted to its binary representation (which works
just like the decimal system, only now we're using 2 instead of 10):

.. math:: x = \sum_{i=0}^{W-1} a_i \cdot 2^i

where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8),
and each :math:`a_i` is either 0 or 1.  For example, 13 is represented
as ``00001101``, which translates to :math:`2^4 + 2^3 + 2`.

The bit-wise operator is the result of

.. math:: z = \sum_{i=0}^{i=W-1} (\lnot a_i) \cdot 2^i,

where :math:`\lnot` is the NOT operator, which yields 1 whenever
:math:`a_i` is 0 and yields 0 whenever :math:`a_i` is 1.

For signed integer inputs, the two's complement is returned.
In a two's-complement system negative numbers are represented by the two's
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]_. A N-bit two's-complement
system can represent every integer in the range
:math:`-2^{N-1}` to :math:`+2^{N-1}-1`.

Parameters
----------
x1 : ndarray
    Only integer types are handled (including booleans).

Returns
-------
out : ndarray
    Result.

See Also
--------
bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr :
    Return the binary representation of the input number as a string.

Notes
-----
`bitwise_not` is an alias for `invert`:

>>> np.bitwise_not is np.invert
True

References
----------
.. [1] Wikipedia, "Two's complement",
    http://en.wikipedia.org/wiki/Two's_complement

Examples
--------
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'

When using signed integer types the result is the two's complement of
the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False]))
array([False,  True], dtype=bool)

bitwise_or()

numpy.bitwise_or(...)

y = bitwise_or(x1,x2)

Compute bit-wise OR of two arrays, element-wise.

When calculating the bit-wise OR between two elements, ``x`` and ``y``,
each element is first converted to its binary representation (which works
just like the decimal system, only now we're using 2 instead of 10):

.. math:: x = \sum_{i=0}^{W-1} a_i \cdot 2^i\\
          y = \sum_{i=0}^{W-1} b_i \cdot 2^i,

where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8),
and each :math:`a_i` and :math:`b_j` is either 0 or 1.  For example, 13
is represented as ``00001101``, which translates to
:math:`2^4 + 2^3 + 2`.

The bit-wise operator is the result of

.. math:: z = \sum_{i=0}^{i=W-1} (a_i \vee b_i) \cdot 2^i,

where :math:`\vee` is the OR operator, which yields one whenever
either :math:`a_i` or :math:`b_i` is 1.

Parameters
----------
x1, x2 : array_like
    Only integer types are handled (including booleans).

Returns
-------
out : array_like
    Result.

See Also
--------
bitwise_and, bitwise_xor
logical_or
binary_repr :
    Return the binary representation of the input number as a string.

Examples
--------
We've seen that 13 is represented by ``00001101``.  Similary, 16 is
represented by ``00010000``.  The bit-wise OR of 13 and 16 is
therefore ``000111011``, or 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'

>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33,  5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33,  6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([  6,   5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32),
...               np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([         6,          5,        255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True,  True], dtype=bool)

>>> from numpy import *
>>> bitwise_or(array([2,5,255]), array([4,4,4]))
array([  6,   5, 255])
>>> bitwise_or(array([2,5,255,2147483647L],dtype=int32), array([4,4,4,2147483647L],dtype=int32))
array([         6,          5,        255, 2147483647])

See also: bitwise_and, bitwise_xor, logical_or

bitwise_xor()

numpy.bitwise_xor(...)

y = bitwise_xor(x1,x2)

Compute bit-wise XOR of two arrays, element-wise.

When calculating the bit-wise XOR between two elements, ``x`` and ``y``,
each element is first converted to its binary representation (which works
just like the decimal system, only now we're using 2 instead of 10):

.. math:: x = \sum_{i=0}^{W-1} a_i \cdot 2^i\\
          y = \sum_{i=0}^{W-1} b_i \cdot 2^i,

where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8),
and each :math:`a_i` and :math:`b_j` is either 0 or 1.  For example, 13
is represented as ``00001101``, which translates to
:math:`2^4 + 2^3 + 2`.

The bit-wise operator is the result of

.. math:: z = \sum_{i=0}^{i=W-1} (a_i \oplus b_i) \cdot 2^i,

where :math:`\oplus` is the XOR operator, which yields one whenever
either :math:`a_i` or :math:`b_i` is 1, but not both.

Parameters
----------
x1, x2 : array_like
    Only integer types are handled (including booleans).

Returns
-------
out : ndarray
    Result.

See Also
--------
bitwise_and, bitwise_or
logical_xor
binary_repr :
    Return the binary representation of the input number as a string.

Examples
--------
We've seen that 13 is represented by ``00001101``.  Similary, 17 is
represented by ``00010001``.  The bit-wise XOR of 13 and 17 is
therefore ``00011100``, or 28:

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'

>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26,  6])

>>> np.bitwise_xor([31,3], [5,6])
array([26,  5])
>>> np.bitwise_xor([True, True], [False, True])
array([ True, False], dtype=bool)

>>> from numpy import *
>>> bitwise_xor(array([2,5,255]), array([4,4,4]))
array([  6,   1, 251])
>>> bitwise_xor(array([2,5,255,2147483647L],dtype=int32), array([4,4,4,2147483647L],dtype=int32))
array([  6,   1, 251,   0])

See also: bitwise_and, bitwise_or, logical_xor

blackman()

numpy.blackman(M)

Return the Blackman window.

The Blackman window is a taper formed by using the the first
three terms of a summation of cosines. It was designed to have close
to the minimal leakage possible.
It is close to optimal, only slightly worse than a Kaiser window.

Parameters
----------
M : int
    Number of points in the output window. If zero or less, an
    empty array is returned.

Returns
-------
out : array
    The window, normalized to one (the value one
    appears only if the number of samples is odd).

See Also
--------
bartlett, hamming, hanning, kaiser

Notes
-----
The Blackman window is defined as

.. math::  w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)


Most references to the Blackman window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function. It is known as a
"near optimal" tapering function, almost as good (by some measures)
as the kaiser window.

References
----------
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
       spectra, Dover Publications, New York.
.. [2] Wikipedia, "Window function",
       http://en.wikipedia.org/wiki/Window_function
.. [3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
       Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

Examples
--------
>>> from numpy import blackman
>>> blackman(12)
array([ -1.38777878e-17,   3.26064346e-02,   1.59903635e-01,
         4.14397981e-01,   7.36045180e-01,   9.67046769e-01,
         9.67046769e-01,   7.36045180e-01,   4.14397981e-01,
         1.59903635e-01,   3.26064346e-02,  -1.38777878e-17])


Plot the window and the frequency response:

>>> from numpy import clip, log10, array, bartlett
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = blackman(51)
>>> plt.plot(window)
>>> plt.title("Blackman window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.show()

>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = linspace(-0.5,0.5,len(A))
>>> response = 20*log10(mag)
>>> response = clip(response,-100,100)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of Bartlett window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()

bmat()

numpy.bmat(obj, ldict=None, gdict=None)

Build a matrix object from a string, nested sequence, or array.

Parameters
----------
obj : string, sequence or array
    Input data.  Variables names in the current scope may
    be referenced, even if `obj` is a string.

Returns
-------
out : matrix
    Returns a matrix object, which is a specialized 2-D array.

See Also
--------
matrix

Examples
--------
>>> A = np.mat('1 1; 1 1')
>>> B = np.mat('2 2; 2 2')
>>> C = np.mat('3 4; 5 6')
>>> D = np.mat('7 8; 9 0')

All the following expressions construct the same block matrix:

>>> np.bmat([[A, B], [C, D]])
matrix([[1, 1, 2, 2],
        [1, 1, 2, 2],
        [3, 4, 7, 8],
        [5, 6, 9, 0]])
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]])
matrix([[1, 1, 2, 2],
        [1, 1, 2, 2],
        [3, 4, 7, 8],
        [5, 6, 9, 0]])
>>> np.bmat('A,B; C,D')
matrix([[1, 1, 2, 2],
        [1, 1, 2, 2],
        [3, 4, 7, 8],
        [5, 6, 9, 0]])

>>> from numpy import *
>>> a = mat('1 2; 3 4')
>>> b = mat('5 6; 7 8')
>>> bmat('a b; b a')       # all elements must be existing symbols
matrix([[1, 2, 5, 6],
[3, 4, 7, 8],
[5, 6, 1, 2],
[7, 8, 3, 4]])

See also: mat

broadcast()

numpy.broadcast(...)

>>> from numpy import *
>>> a = array([[1,2],[3,4]])
>>> b = array([5,6])
>>> c = broadcast(a,b)
>>> c.nd                                     # the number of dimensions in the broadcasted result
2
>>> c.shape                                  # the shape of the broadcasted result
(2, 2)
>>> c.size                                   # total size of the broadcasted result
4
>>> for value in c: print value
...
(1, 5)
(2, 6)
(3, 5)
(4, 6)
>>> c.reset()                                # reset the iterator to the beginning
>>> c.next()                                 # next element
(1, 5)

See also: ndenumerate, ndindex, flat

broadcast_arrays()

numpy.broadcast_arrays(*args)

Broadcast any number of arrays against each other.

Parameters
----------
`*args` : arrays
    The arrays to broadcast.

Returns
-------
broadcasted : list of arrays
    These arrays are views on the original arrays. They are typically not
    contiguous. Furthermore, more than one element of a broadcasted array
    may refer to a single memory location. If you need to write to the
    arrays, make copies first.

Examples
--------
>>> x = np.array([[1,2,3]])
>>> y = np.array([[1],[2],[3]])
>>> np.broadcast_arrays(x, y)
[array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]]), array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])]

Here is a useful idiom for getting contiguous copies instead of
non-contiguous views.

>>> map(np.array, np.broadcast_arrays(x, y))
[array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]]), array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])]

byte_bounds()

numpy.byte_bounds(a)

(low, high) are pointers to the end-points of an array

low is the first byte
high is just *past* the last byte

If the array is not single-segment, then it may not actually
use every byte between these bounds.

The array provided must conform to the Python-side of the array interface

bytes()

numpy.random.bytes(...)

bytes(length)

Return random bytes.

Parameters
----------
length : int
    Number of random bytes.

Returns
-------
out : str
    String of length `N`.

Examples
--------
>>> np.random.bytes(10)
' eh\x85\x022SZ\xbf\xa4' #random

>>> from numpy import *
>>> from numpy.random import bytes
>>> print repr(bytes(5))        # string of 5 random bytes
'o\x07\x9f\xdf\xdf'
>>> print repr(bytes(5))        # another string of 5 random bytes
'\x98\xc9KD\xe0'

See also: shuffle, permutation, seed

byteswap()

ndarray.byteswap(...)

a.byteswap(inplace)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

Parameters
----------
inplace: bool, optional
    If ``True``, swap bytes in-place, default is ``False``.

Returns
-------
out: ndarray
    The byteswapped array. If `inplace` is ``True``, this is
    a view to self.

Examples
--------
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([  256,     1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
      dtype='|S3')

c_

numpy.c_

Translates slice objects to concatenation along the second axis.

For example:
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([1, 2, 3, 0, 0, 4, 5, 6])

>>> from numpy import *
>>> c_[1:5]                           # for single ranges, c_ works like r_
array([1, 2, 3, 4])
>>> c_[1:5,2:6]                       # for comma separated values, c_ stacks column-wise
array([[1, 2],
[2, 3],
[3, 4],
[4, 5]])
>>> a = array([[1,2,3],[4,5,6]])
>>> c_[a,a]                           # concatenation along last (default) axis (column-wise, that's why it's called c_)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])
>>> c_['0',a,a]                       # concatenation along 1st axis, equivalent to r_[a,a]
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])

See also: r_, hstack, vstack, column_stack, concatenate, bmat, s_

cast[]()

>>> from numpy import *
>>> x = arange(3)
>>> x.dtype
dtype('int32')
>>> cast['int64'](x)
array([0, 1, 2], dtype=int64)
>>> cast['uint'](x)
array([0, 1, 2], dtype=uint32)
>>> cast[float128](x)
array([0.0, 1.0, 2.0], dtype=float128)
>>> cast.keys()                                              # list dtype cast possibilities
<snip>

See also: astype, typeDict

can_cast()

numpy.can_cast(...)

can_cast(from=d1, to=d2)

Returns True if cast between data types can occur without losing precision.

Parameters
----------
from: data type code
    Data type code to cast from.
to: data type code
    Data type code to cast to.

Returns
-------
out : bool
    True if cast can occur without losing precision.

ceil()

numpy.ceil(...)

y = ceil(x)

Return the ceiling of the input, element-wise.

The ceil of the scalar `x` is the smallest integer `i`, such that
`i >= x`.  It is often denoted as :math:`\lceil x \rceil`.

Parameters
----------
x : array_like
    Input data.

Returns
-------
y : {ndarray, scalar}
    The ceiling of each element in `x`.

Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.ceil(a)
array([-1., -1., -0.,  1.,  2.,  2.,  2.])

>>> from numpy import *
>>> a = array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7])
>>> ceil(a)                                                # nearest integers greater-than or equal to a
array([-1., -1., -0.,  1.,  2.,  2.])

See also: floor, round_, fix, astype

choose()

numpy.choose(a, choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this function
will create a new array that merges each of the choice arrays.  Where a
value in `a` is i, then the new array will have the value that
choices[i] contains in the same place.

Parameters
----------
a : int array
    This array must contain integers in [0, n-1], where n is the number
    of choices.
choices : sequence of arrays
    Choice arrays. The index array and all of the choices should be
    broadcastable to the same shape.
out : array, optional
    If provided, the result will be inserted into this array. It should
    be of the appropriate shape and dtype
mode : {'raise', 'wrap', 'clip'}, optional
    Specifies how out-of-bounds indices will behave:

      * 'raise' : raise an error
      * 'wrap' : wrap around
      * 'clip' : clip to the range

Returns
-------
merged_array : array
    The merged results.

See Also
--------
ndarray.choose : equivalent method

Examples
--------

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
...   [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices)
array([20, 31, 12,  3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip')
array([20, 31, 12,  3])
>>> np.choose([2, 4, 1, 0], choices, mode='wrap')
array([20,  1, 12,  3])

ndarray.choose(...)

a.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to `numpy.choose` for full documentation.

See Also
--------
numpy.choose : equivalent function

>>> from numpy import *
>>> choice0 =array([10,12,14,16])                   # selector and choice arrays must be equally sized
>>> choice1 =array([20,22,24,26])
>>> choice2 =array([30,32,34,36])
>>> selector = array([0,0,2,1])                     # selector can only contain integers in range(number_of_choice_arrays)
>>> selector.choose(choice0,choice1,choice2)
array([10, 12, 34, 26])
>>> a = arange(4)
>>> choose(a >= 2, (choice0, choice1))              # separate function also exists
array([10, 12, 24, 26])

See also: compress, take, where, select

clip()

numpy.clip(a, a_min, a_max, out=None)

Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to
the interval edges.  For example, if an interval of ``[0, 1]``
is specified, values smaller than 0 become 0, and values larger
than 1 become 1.

Parameters
----------
a : array_like
    Array containing elements to clip.
a_min : scalar or array_like
    Minimum value.
a_max : scalar or array_like
    Maximum value.  If `a_min` or `a_max` are array_like, then they will
    be broadcasted to the shape of `a`.
out : ndarray, optional
    The results will be placed in this array. It may be the input
    array for in-place clipping.  `out` must be of the right shape
    to hold the output.  Its type is preserved.

Returns
-------
clipped_array : ndarray
    An array with the elements of `a`, but where values
    < `a_min` are replaced with `a_min`, and those > `a_max`
    with `a_max`.

Examples
--------
>>> a = np.arange(10)
>>> np.clip(a, 1, 8)
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a)
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10)
>>> np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

ndarray.clip(...)

a.clip(a_min, a_max, out=None)

Return an array whose values are limited to ``[a_min, a_max]``.

Refer to `numpy.clip` for full documentation.

See Also
--------
numpy.clip : equivalent function

>>> from numpy import *
>>> a = array([5,15,25,3,13])
>>> a.clip(min=10,max=20)
array([10, 15, 20, 10, 13])
>>> clip(a,10,20)                             # this syntax also exists

See also: where compress

column_stack()

numpy.column_stack(tup)

Stack 1-D arrays as columns into a 2-D array

Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with hstack.  1-D arrays are turned into 2-D columns
first.

Parameters
----------
tup : sequence of 1-D or 2-D arrays.
    Arrays to stack. All of them must have the same first dimension.

Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])

>>> from numpy import *
>>> a = array([1,2])
>>> b = array([3,4])
>>> c = array([5,6])
>>> column_stack((a,b,c))               # a,b,c are 1-d arrays with equal length
array([[1, 3, 5],
[2, 4, 6]])

See also: concatenate, dstack, hstack, vstack, c_

common_type()

numpy.common_type(*arrays)

Return the inexact scalar type which is most common in a list of arrays.

The return type will always be an inexact scalar type, even if all the
arrays are integer arrays

Parameters
----------
array1, array2, ... : ndarray
    Input arrays.

Returns
-------
out : data type code
    Data type code.

See Also
--------
dtype

Examples
--------
>>> np.common_type(np.arange(4), np.array([45,6]), np.array([45.0, 6.0]))
<type 'numpy.float64'>

compare_chararrays()

numpy.compare_chararrays(...)

compress()

numpy.compress(condition, a, axis=None, out=None)

Return selected slices of an array along given axis.

Parameters
----------
condition : array_like
    Boolean 1-D array selecting which entries to return. If len(condition)
    is less than the size of `a` along the given axis, then output is
    truncated to the length of the condition array.
a : array_like
    Array from which to extract a part.
axis : int, optional
    Axis along which to take slices. If None (default), work on the
    flattened array.
out : ndarray, optional
    Output array.  Its type is preserved and it must be of the right
    shape to hold the output.

Returns
-------
compressed_array : ndarray
    A copy of `a` without the slices along axis for which `condition`
    is false.

See Also
--------
ndarray.compress: Equivalent method.

Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.compress([0, 1], a, axis=0)
array([[3, 4]])
>>> np.compress([1], a, axis=1)
array([[1],
       [3]])
>>> np.compress([0,1,1], a)
array([2, 3])

ndarray.compress(...)

a.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to `numpy.compress` for full documentation.

See Also
--------
numpy.compress : equivalent function

>>> from numpy import *
>>> a = array([10, 20, 30, 40])
>>> condition = (a > 15) & (a < 35)
>>> condition
array([False, True, True, False], dtype=bool)
>>> a.compress(condition)
array([20, 30])
>>> a[condition]                                      # same effect
array([20, 30])
>>> compress(a >= 30, a)                              # this form also exists
array([30, 40])
>>> b = array([[10,20,30],[40,50,60]])
>>> b.compress(b.ravel() >= 22)
array([30, 40, 50, 60])
>>> x = array([3,1,2])
>>> y = array([50, 101])
>>> b.compress(x >= 2, axis=1)                       # illustrates the use of the axis keyword
array([[10, 30],
[40, 60]])
>>> b.compress(y >= 100, axis=0)
array([[40, 50, 60]])

See also: choose, take, where, trim_zeros, unique, unique1d

concatenate()

numpy.concatenate(...)

concatenate((a1, a2, ...), axis=0)

Join a sequence of arrays together.

Parameters
----------
a1, a2, ... : sequence of ndarrays
    The arrays must have the same shape, except in the dimension
    corresponding to `axis` (the first, by default).
axis : int, optional
    The axis along which the arrays will be joined.  Default is 0.

Returns
-------
res : ndarray
    The concatenated array.

See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
              near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into multiple sub-arrays horizontally (column wise)
vsplit : Split array into multiple sub-arrays vertically (row wise)
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)

Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])

>>> from numpy import *
>>> x = array([[1,2],[3,4]])
>>> y = array([[5,6],[7,8]])
>>> concatenate((x,y))                          # default is axis=0
array([[1, 2],
[3, 4],
[5, 6],
[7, 8]])
>>> concatenate((x,y),axis=1)
array([[1, 2, 5, 6],
[3, 4, 7, 8]])

See also: append, column_stack, dstack, hstack, vstack, array_split

conj()

numpy.conj(...)

y = conjugate(x)

Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

Parameters
----------
x : array_like
    Input value.

Returns
-------
y : ndarray
    The complex conjugate of `x`, with same dtype as `y`.

Examples
--------
>>> np.conjugate(1+2j)
(1-2j)

ndarray.conj(...)

a.conj()

Return an array with all complex-valued elements conjugated.

Synonym for conjugate()

See conjugate()

conjugate()

numpy.conjugate(...)

y = conjugate(x)

Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.

Parameters
----------
x : array_like
    Input value.

Returns
-------
y : ndarray
    The complex conjugate of `x`, with same dtype as `y`.

Examples
--------
>>> np.conjugate(1+2j)
(1-2j)

ndarray.conjugate(...)

a.conjugate()

Return an array with all complex-valued elements conjugated.

>>> a = array([1+2j,3-4j])
>>> a.conj()                              # .conj() and .conjugate() are the same
array([ 1.-2.j,  3.+4.j])
>>> a.conjugate()
array([ 1.-2.j,  3.+4.j])
>>> conj(a)                              # is also possible
>>> conjugate(a)                         # is also possible

See also: vdot

convolve()

numpy.convolve(a, v, mode='full')

Returns the discrete, linear convolution of two one-dimensional sequences.

The convolution operator is often seen in signal processing, where it
models the effect of a linear time-invariant system on a signal [1]_.  In
probability theory, the sum of two independent random variables is
distributed according to the convolution of their individual
distributions.

Parameters
----------
a : (N,) array_like
    First one-dimensional input array.
v : (M,) array_like
    Second one-dimensional input array.
mode : {'full', 'valid', 'same'}, optional
    'full':
      By default, mode is 'full'.  This returns the convolution
      at each point of overlap, with an output shape of (N+M-1,). At
      the end-points of the convolution, the signals do not overlap
      completely, and boundary effects may be seen.

    'same':
      Mode `same` returns output of length ``max(M, N)``.  Boundary
      effects are still visible.

    'valid':
      Mode `valid` returns output of length
      ``max(M, N) - min(M, N) + 1``.  The convolution product is only given
      for points where the signals overlap completely.  Values outside
      the signal boundary have no effect.

Returns
-------
out : ndarray
    Discrete, linear convolution of `a` and `v`.

See Also
--------
scipy.signal.fftconv : Convolve two arrays using the Fast Fourier
                       Transform.
scipy.linalg.toeplitz : Used to construct the convolution operator.

Notes
-----
The discrete convolution operation is defined as

.. math:: (f * g)[n] = \sum_{m = -\infty}^{\infty} f[m] f[n - m]

It can be shown that a convolution :math:`x(t) * y(t)` in time/space
is equivalent to the multiplication :math:`X(f) Y(f)` in the Fourier
domain, after appropriate padding (padding is necessary to prevent
circular convolution).  Since multiplication is more efficient (faster)
than convolution, the function `scipy.signal.fftconvolve` exploits the
FFT to calculate the convolution of large data-sets.

References
----------
.. [1] Wikipedia, "Convolution", http://en.wikipedia.org/wiki/Convolution.

Examples
--------
Note how the convolution operator flips the second array
before "sliding" the two across one another:

>>> np.convolve([1, 2, 3], [0, 1, 0.5])
array([ 0. ,  1. ,  2.5,  4. ,  1.5])

Only return the middle values of the convolution.
Contains boundary effects, where zeros are taken
into account:

>>> np.convolve([1,2,3],[0,1,0.5], 'same')
array([ 1. ,  2.5,  4. ])

The two arrays are of the same length, so there
is only one position where they completely overlap:

>>> np.convolve([1,2,3],[0,1,0.5], 'valid')
array([ 2.5])

copy()

numpy.copy(a)

Return an array copy of the given object.

Parameters
----------
a : array_like
    Input data.

Returns
-------
arr : ndarray
    Array interpretation of `a`.

Notes
-----
This is equivalent to

>>> np.array(a, copy=True)

Examples
--------
Create an array x, with a reference y and a copy z:

>>> x = np.array([1, 2, 3])
>>> y = x
>>> z = np.copy(x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True
>>> x[0] == z[0]
False

ndarray.copy(...)

a.copy(order='C')

Return a copy of the array.

Parameters
----------
order : {'C', 'F', 'A'}, optional
    By default, the result is stored in C-contiguous (row-major) order in
    memory.  If `order` is `F`, the result has 'Fortran' (column-major)
    order.  If order is 'A' ('Any'), then the result has the same order
    as the input.

Examples
--------
>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
       [0, 0, 0]])

>>> y
array([[1, 2, 3],
       [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

>>> from numpy import *
>>> a = array([1,2,3])
>>> a
array([1, 2, 3])
>>> b = a                                  # b is a reference to a
>>> b[1] = 4
>>> a
array([1, 4, 3])
>>> a = array([1,2,3])
>>> b = a.copy()                           # b is now an independent copy of a
>>> b[1] = 4
>>> a
array([1, 2, 3])
>>> b
array([1, 4, 3])

See also: view

corrcoef()

numpy.corrcoef(x, y=None, rowvar=1, bias=0)

Return correlation coefficients.

Please refer to the documentation for `cov` for more detail.  The
relationship between the correlation coefficient matrix, P, and the
covariance matrix, C, is

.. math:: P_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }

The values of P are between -1 and 1.

See Also
--------
cov : Covariance matrix

>>> from numpy import *
>>> T = array([1.3, 4.5, 2.8, 3.9])         # temperature measurements
>>> P = array([2.7, 8.7, 4.7, 8.2])         # corresponding pressure measurements
>>> print corrcoef([T,P])                   # correlation matrix of temperature and pressure
[[ 1.          0.98062258]
[ 0.98062258  1.        ]]
>>> rho = array([8.5, 5.2, 6.9, 6.5])       # corresponding density measurements
>>> data = column_stack([T,P,rho])
>>> print corrcoef([T,P,rho])               # correlation matrix of T,P and rho
[[ 1.          0.98062258 -0.97090288]
[ 0.98062258  1.         -0.91538464]
[-0.97090288 -0.91538464  1.        ]]

See also: cov, var

correlate()

numpy.correlate(a, v, mode='valid')

Discrete, linear correlation of two 1-dimensional sequences.

This function is equivalent to

>>> np.convolve(a, v[::-1], mode=mode)

where ``v[::-1]`` is the reverse of `v`.

Parameters
----------
a, v : array_like
    Input sequences.
mode : {'valid', 'same', 'full'}, optional
    Refer to the `convolve` docstring.  Note that the default
    is `valid`, unlike `convolve`, which uses `full`.

See Also
--------
convolve : Discrete, linear convolution of two
           one-dimensional sequences.

cos()

numpy.cos(...)

y = cos(x)

Cosine elementwise.

Parameters
----------
x : array_like
    Input array in radians.

Returns
-------
out : ndarray
    Output array of same shape as `x`.

Examples
--------
>>> np.cos(np.array([0, np.pi/2, np.pi]))
array([  1.00000000e+00,   6.12303177e-17,  -1.00000000e+00])

>>> cos(array([0, pi/2, pi]))
array([  1.00000000e+00,   6.12303177e-17,  -1.00000000e+00])

cosh()

numpy.cosh(...)

y = cosh(x)

Hyperbolic cosine, element-wise.

Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Output array of same shape as `x`.

Examples
--------
>>> np.cosh(0)
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-4, 4, 1000)
>>> plt.plot(x, np.cosh(x))
>>> plt.show()

cov()

numpy.cov(m, y=None, rowvar=1, bias=0)

Estimate a covariance matrix, given data.

Covariance indicates the level to which two variables vary together.
If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
then the covariance matrix element :math:`C_{ij}` is the covariance of
:math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
of :math:`x_i`.

Parameters
----------
m : array_like
    A 1-D or 2-D array containing multiple variables and observations.
    Each row of `m` represents a variable, and each column a single
    observation of all those variables. Also see `rowvar` below.
y : array_like, optional
    An additional set of variables and observations. `y` has the same
    form as that of `m`.
rowvar : int, optional
    If `rowvar` is non-zero (default), then each row represents a
    variable, with observations in the columns. Otherwise, the relationship
    is transposed: each column represents a variable, while the rows
    contain observations.
bias : int, optional
    Default normalization is by ``(N-1)``, where ``N`` is the number of
    observations given (unbiased estimate). If `bias` is 1, then
    normalization is by ``N``.

Returns
-------
out : ndarray
    The covariance matrix of the variables.

See Also
--------
corrcoef : Normalized covariance matrix

Examples
--------
Consider two variables, :math:`x_0` and :math:`x_1`, which
correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
>>> x
array([[0, 1, 2],
       [2, 1, 0]])

Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
matrix shows this clearly:

>>> np.cov(x)
array([[ 1., -1.],
       [-1.,  1.]])

Note that element :math:`C_{0,1}`, which shows the correlation between
:math:`x_0` and :math:`x_1`, is negative.

Further, note how `x` and `y` are combined:

>>> x = [-2.1, -1,  4.3]
>>> y = [3,  1.1,  0.12]
>>> X = np.vstack((x,y))
>>> print np.cov(X)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x, y)
[[ 11.71        -4.286     ]
 [ -4.286        2.14413333]]
>>> print np.cov(x)
11.71

>>> from numpy import *
>>> x = array([1., 3., 8., 9.])
>>> variance = cov(x)                       # normalized by N-1
>>> variance = cov(x, bias=1)               # normalized by N
>>> T = array([1.3, 4.5, 2.8, 3.9])         # temperature measurements
>>> P = array([2.7, 8.7, 4.7, 8.2])         # corresponding pressure measurements
>>> cov(T,P)                                # covariance between temperature and pressure
3.9541666666666657
>>> rho = array([8.5, 5.2, 6.9, 6.5])       # corresponding density measurements
>>> data = column_stack([T,P,rho])
>>> print cov(data)                         # covariance matrix of T,P and rho
[[ 1.97583333  3.95416667 -1.85583333]
[ 3.95416667  8.22916667 -3.57083333]
[-1.85583333 -3.57083333  1.84916667]]

See also: corrcoef, std, var

cross()

numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None)

Return the cross product of two (arrays of) vectors.

The cross product is performed over the last axis of a and b by default,
and can handle axes with dimensions 2 and 3. For a dimension of 2,
the z-component of the equivalent three-dimensional cross product is
returned.

>>> from numpy import *
>>> x = array([1,2,3])
>>> y = array([4,5,6])
>>> cross(x,y)                   # vector cross-product
array([-3,  6, -3])

See also: inner, ix_, outer

cumprod()

numpy.cumprod(a, axis=None, dtype=None, out=None)

Return the cumulative product of elements along a given axis.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    Axis along which the cumulative product is computed.  By default the
    input is flattened.
dtype : dtype, optional
    Type of the returned array, as well as of the accumulator in which
    the elements are multiplied.  If dtype is not specified, it defaults
    to the dtype of `a`, unless `a` has an integer dtype with a precision
    less than that of the default platform integer.  In that case, the
    default platform integer is used instead.
out : ndarray, optional
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output
    but the type of the resulting values will be cast if necessary.

Returns
-------
cumprod : ndarray
    A new array holding the result is returned unless `out` is
    specified, in which case a reference to out is returned.

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
...               # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([   1.,    2.,    6.,   24.,  120.,  720.])

The cumulative product for each column (i.e., over the rows of)
`a`:

>>> np.cumprod(a, axis=0)
array([[ 1,  2,  3],
       [ 4, 10, 18]])

The cumulative product for each row (i.e. over the columns of)
`a`:

>>> np.cumprod(a,axis=1)
array([[  1,   2,   6],
       [  4,  20, 120]])

ndarray.cumprod(...)

a.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to `numpy.cumprod` for full documentation.

See Also
--------
numpy.cumprod : equivalent function

>>> from numpy import *
>>> a = array([1,2,3])
>>> a.cumprod()                                # total product 1*2*3 = 6, and intermediate results 1, 1*2
array([1, 2, 6])
>>> cumprod(a)                                 # also exists
array([1, 2, 6])
>>> a = array([[1,2,3],[4,5,6]])
>>> a.cumprod(dtype=float)                     # specify type of output
array([1., 2., 6., 24., 120., 720.])
>>> a.cumprod(axis=0)                          # for each of the 3 columns: product and intermediate results
array([[ 1,  2,  3],
[ 4, 10, 18]])
>>> a.cumprod(axis=1)                          # for each of the two rows: product and intermediate results
array([[  1,   2,   6],
[  4,  20, 120]])

See also: accumulate, prod, cumsum

cumproduct()

numpy.cumproduct(a, axis=None, dtype=None, out=None)

Return the cumulative product over the given axis.


See Also
--------
cumprod : equivalent function; see for details.

cumsum()

numpy.cumsum(a, axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along a given axis.

Parameters
----------
a : array_like
    Input array or object that can be converted to an array.
axis : int, optional
    Axis along which the cumulative sum is computed. The default
    (`axis` = `None`) is to compute the cumsum over the flattened
    array. `axis` may be negative, in which case it counts from the
    last to the first axis.
dtype : dtype, optional
    Type of the returned array and of the accumulator in which the
    elements are summed.  If `dtype` is not specified, it defaults
    to the dtype of `a`, unless `a` has an integer dtype with a
    precision less than that of the default platform integer.  In
    that case, the default platform integer is used.
out : ndarray, optional
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output
    but the type will be cast if necessary.

Returns
-------
cumsum : ndarray.
    A new array holding the result is returned unless `out` is
    specified, in which case a reference to `out` is returned.

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.cumsum(a)
array([ 1,  3,  6, 10, 15, 21])
>>> np.cumsum(a,dtype=float)     # specifies type of output value(s)
array([  1.,   3.,   6.,  10.,  15.,  21.])
>>> np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns
array([[1, 2, 3],
       [5, 7, 9]])
>>> np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows
array([[ 1,  3,  6],
       [ 4,  9, 15]])

ndarray.cumsum(...)

a.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to `numpy.cumsum` for full documentation.

See Also
--------
numpy.cumsum : equivalent function

>>> from numpy import *
>>> a = array([1,2,3])                                  # cumulative sum = intermediate summing results & total sum
>>> a.cumsum()
array([1, 3, 6])
>>> cumsum(a)                                           # also exists
array([1, 3, 6])
>>> a = array([[1,2,3],[4,5,6]])
>>> a.cumsum(dtype=float)                               # specifies type of output value(s)
array([  1.,   3.,   6.,  10.,  15.,  21.])
>>> a.cumsum(axis=0)                                    # sum over rows for each of the 3 columns
array([[1, 2, 3],
[5, 7, 9]])
>>> a.cumsum(axis=1)                                    # sum over columns for each of the 2 rows
array([[ 1,  3,  6],
[ 4,  9, 15]])

See also: accumulate, sum, cumprod

degrees()

numpy.degrees(...)

y = degrees(x)

Convert angles from radians to degrees.

Parameters
----------
x : array_like
  Angle in radians.

Returns
-------
y : ndarray
  The corresponding angle in degrees.


See Also
--------
radians : Convert angles from degrees to radians.
unwrap : Remove large jumps in angle by wrapping.

Notes
-----
degrees(x) is ``180 * x / pi``.

Examples
--------
>>> np.degrees(np.pi/2)
90.0

delete()

numpy.delete(arr, obj, axis=None)

Return a new array with sub-arrays along an axis deleted.

Parameters
----------
arr : array_like
  Input array.
obj : slice, integer or an array of integers
  Indicate which sub-arrays to remove.
axis : integer, optional
  The axis along which to delete the subarray defined by `obj`.
  If `axis` is None, `obj` is applied to the flattened array.

See Also
--------
insert : Insert values into an array.
append : Append values at the end of an array.

Examples
--------
>>> arr = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, 1, 0)
array([[ 1,  2,  3,  4],
       [ 9, 10, 11, 12]])
>>> np.delete(arr, np.s_[::2], 1)
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
>>> np.delete(arr, [1,3,5], None)
array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

>>> from numpy import *
>>> a = array([0, 10, 20, 30, 40])
>>> delete(a, [2,4])                                 # remove a[2] and a[4]
array([ 0, 10, 30])
>>> a = arange(16).reshape(4,4)
>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11],
[12, 13, 14, 15]])
>>> delete(a, s_[1:3], axis=0)                       # remove rows 1 and 2
array([[ 0,  1,  2,  3],
[12, 13, 14, 15]])
>>> delete(a, s_[1:3], axis=1)                       # remove columns 1 and 2
array([[ 0,  3],
[ 4,  7],
[ 8, 11],
[12, 15]])

See also: append, insert

deprecate()

numpy.deprecate(func, oldname=None, newname=None)

Deprecate old functions.
Issues a DeprecationWarning, adds warning to oldname's docstring,
rebinds oldname.__name__ and returns new function object.

Example:
oldfunc = deprecate(newfunc, 'oldfunc', 'newfunc')

deprecate_with_doc()

numpy.deprecate_with_doc(somestr)

Decorator to deprecate functions and provide detailed documentation
with 'somestr' that is added to the functions docstring.

Example:
depmsg = 'function scipy.foo has been merged into numpy.foobar'
@deprecate_with_doc(depmsg)
def foo():
    pass

diag()

numpy.diag(v, k=0)

Extract a diagonal or construct a diagonal array.

Parameters
----------
v : array_like
    If `v` is a 2-dimensional array, return a copy of
    its `k`-th diagonal. If `v` is a 1-dimensional array,
    return a 2-dimensional array with `v` on the `k`-th diagonal.
k : int, optional
    Diagonal in question.  The defaults is 0.

Examples
--------
>>> x = np.arange(9).reshape((3,3))
>>> x
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

>>> np.diag(x)
array([0, 4, 8])

>>> np.diag(np.diag(x))
array([[0, 0, 0],
       [0, 4, 0],
       [0, 0, 8]])

>>> from numpy import *
>>> a = arange(12).reshape(4,3)
>>> print a
[[ 0  1  2]
[ 3  4  5]
[ 6  7  8]
[ 9 10 11]]
>>> print diag(a,k=0)
[0 4 8]
>>> print diag(a,k=1)
[1 5]
>>> print diag(array([1,4,5]),k=0)
[[1 0 0]
[0 4 0]
[0 0 5]]
>>> print diag(array([1,4,5]),k=1)
[[0 1 0 0]
[0 0 4 0]
[0 0 0 5]
[0 0 0 0]]

See also: diagonal, diagflat, trace

diagflat()

numpy.diagflat(v, k=0)

Create a 2-dimensional array with the flattened input as a diagonal.

Parameters
----------
v : array_like
    Input data, which is flattened and set as the `k`-th
    diagonal of the output.
k : int, optional
    Diagonal to set.  The default is 0.

Examples
--------
>>> np.diagflat([[1,2],[3,4]])
array([[1, 0, 0, 0],
       [0, 2, 0, 0],
       [0, 0, 3, 0],
       [0, 0, 0, 4]])

>>> np.diagflat([1,2], 1)
array([[0, 1, 0],
       [0, 0, 2],
       [0, 0, 0]])

>>> from numpy import *
>>> x = array([[5,6],[7,8]])
>>> diagflat(x)                    # flatten x, then put elements on diagonal
array([[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]])

See also: diag, diagonal, flatten

diagonal()

numpy.diagonal(a, offset=0, axis1=0, axis2=1)

Return specified diagonals.

If `a` is 2-D, returns the diagonal of `a` with the given offset,
i.e., the collection of elements of the form `a[i,i+offset]`.
If `a` has more than two dimensions, then the axes specified
by `axis1` and `axis2` are used to determine the 2-D subarray
whose diagonal is returned. The shape of the resulting array
can be determined by removing `axis1` and `axis2` and appending
an index to the right equal to the size of the resulting diagonals.

Parameters
----------
a : array_like
    Array from which the diagonals are taken.
offset : int, optional
    Offset of the diagonal from the main diagonal. Can be both positive
    and negative. Defaults to main diagonal (0).
axis1 : int, optional
    Axis to be used as the first axis of the 2-D subarrays from which
    the diagonals should be taken. Defaults to first axis (0).
axis2 : int, optional
    Axis to be used as the second axis of the 2-D subarrays from which
    the diagonals should be taken. Defaults to second axis (1).

Returns
-------
array_of_diagonals : ndarray
    If `a` is 2-D, a 1-D array containing the diagonal is
    returned.  If `a` has larger dimensions, then an array of
    diagonals is returned.

Raises
------
ValueError
    If the dimension of `a` is less than 2.

See Also
--------
diag : Matlab workalike for 1-D and 2-D arrays.
diagflat : Create diagonal arrays.
trace : Sum along diagonals.

Examples
--------
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
       [2, 3]])
>>> a.diagonal()
array([0, 3])
>>> a.diagonal(1)
array([1])

>>> a = np.arange(8).reshape(2,2,2)
>>> a
array([[[0, 1],
        [2, 3]],
<BLANKLINE>
       [[4, 5],
        [6, 7]]])
>>> a.diagonal(0,-2,-1)
array([[0, 3],
       [4, 7]])

ndarray.diagonal(...)

a.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals.

Refer to `numpy.diagonal` for full documentation.

See Also
--------
numpy.diagonal : equivalent function

>>> from numpy import *
>>> a = arange(12).reshape(3,4)
>>> print a
[[ 0  1  2  3]
[ 4  5  6  7]
[ 8  9 10 11]]
>>> a.diagonal()
array([ 0,  5, 10])
>>> a.diagonal(offset=1)
array([ 1,  6, 11])
>>> diagonal(a)                            # Also this form exists
array([ 0,  5, 10])

See also: diag, diagflat, trace

diff()

numpy.diff(a, n=1, axis=-1)

Calculate the nth order discrete difference along given axis.

Parameters
----------
a : array_like
    Input array
n : int, optional
    The number of times values are differenced.
axis : int, optional
    The axis along which the difference is taken.

Returns
-------
out : ndarray
    The `n` order differences.  The shape of the output is the same as `a`
    except along `axis` where the dimension is `n` less.

Examples
--------
>>> x = np.array([0,1,3,9,5,10])
>>> np.diff(x)
array([ 1,  2,  6, -4,  5])
>>> np.diff(x,n=2)
array([  1,   4, -10,   9])
>>> x = np.array([[1,3,6,10],[0,5,6,8]])
>>> np.diff(x)
array([[2, 3, 4],
[5, 1, 2]])
>>> np.diff(x,axis=0)
array([[-1,  2,  0, -2]])

>>> from numpy import *
>>> x = array([0,1,3,9,5,10])
>>> diff(x)                                          # 1st-order differences between the elements of x
array([ 1,  2,  6, -4,  5])
>>> diff(x,n=2)                                      # 2nd-order differences, equivalent to diff(diff(x))
array([  1,   4, -10,   9])
>>> x = array([[1,3,6,10],[0,5,6,8]])
>>> diff(x)                                         # 1st-order differences between the columns (default: axis=-1)
array([[2, 3, 4],
[5, 1, 2]])
>>> diff(x,axis=0)                                  # 1st-order difference between the rows
array([[-1,  2,  0, -2]])

digitize()

numpy.digitize(...)

digitize(x,bins)

Return the index of the bin to which each value of x belongs.

Each index i returned is such that bins[i-1] <= x < bins[i] if
bins is monotonically increasing, or bins [i-1] > x >= bins[i] if
bins is monotonically decreasing.

Beyond the bounds of the bins 0 or len(bins) is returned as appropriate.

>>> from numpy import *
>>> x = array([0.2, 6.4, 3.0, 1.6])
>>> bins = array([0.0, 1.0, 2.5, 4.0, 10.0])                      # monotonically increasing
>>> d = digitize(x,bins)                                          # in which bin falls each value of x?
>>> d
array([1, 4, 3, 2])
>>> for n in range(len(x)):
...   print bins[d[n]-1], "<=", x[n], "<", bins[d[n]]
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

See also: bincount, histogram

disp()

numpy.disp(mesg, device=None, linefeed=True)

Display a message on a device

Parameters
----------
mesg : string
    Message to display.
device : device object with 'write' method
    Device to write message.  If None, defaults to ``sys.stdout`` which is
    very similar to ``print``.
linefeed : bool, optional
    Option whether to print a line feed or not.  Defaults to True.

divide()

numpy.divide(...)

y = divide(x1,x2)

Divide arguments element-wise.

Parameters
----------
x1 : array_like
    Dividend array.
x2 : array_like
    Divisor array.

Returns
-------
y : {ndarray, scalar}
    The quotient `x1/x2`, element-wise. Returns a scalar if
    both  `x1` and `x2` are scalars.

See Also
--------
seterr : Set whether to raise or warn on overflow, underflow and division
         by zero.

Notes
-----
Equivalent to `x1` / `x2` in terms of array-broadcasting.

Behavior on division by zero can be changed using `seterr`.

When both `x1` and `x2` are of an integer type, `divide` will return
integers and throw away the fractional part. Moreover, division by zero
always yields zero in integer arithmetic.

Examples
--------
>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[ NaN,  1. ,  1. ],
       [ Inf,  4. ,  2.5],
       [ Inf,  7. ,  4. ]])

Note the behavior with integer types:

>>> np.divide(2, 4)
0
>>> np.divide(2, 4.)
0.5

Division by zero always yields zero in integer arithmetic, and does not
raise an exception or a warning:

>>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int))
array([0, 0])

Division by zero can, however, be caught using `seterr`:

>>> old_err_state = np.seterr(divide='raise')
>>> np.divide(1, 0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
FloatingPointError: divide by zero encountered in divide

>>> ignored_states = np.seterr(**old_err_state)
>>> np.divide(1, 0)
0

dot()

numpy.dot(...)

dot(a,b)
Returns the dot product of a and b for arrays of floating point types.
Like the generic numpy equivalent the product sum is over
the last dimension of a and the second-to-last dimension of b.
NB: The first argument is not conjugated.

>>> from numpy import *
>>> x = array([[1,2,3],[4,5,6]])
>>> x.shape
(2, 3)
>>> y = array([[1,2],[3,4],[5,6]])
>>> y.shape
(3, 2)
>>> dot(x,y)                                               # matrix multiplication  (2,3) x (3,2) -> (2,2)
array([[22, 28],
[49, 64]])
>>>
>>> import numpy
>>> if id(dot) == id(numpy.core.multiarray.dot):           # A way to know if you use fast blas/lapack or not.
...   print "Not using blas/lapack!"

See also: vdot, inner, multiply

dsplit()

numpy.dsplit(ary, indices_or_sections)

Split array into multiple sub-arrays along the 3rd axis (depth).

Parameters
----------
ary : ndarray
    An array, with at least 3 dimensions, to be divided into sub-arrays
    depth-wise, or along the third axis.
indices_or_sections: integer or 1D array
    If `indices_or_sections` is an integer, N, the array will be divided
    into N equal arrays along `axis`. If an equal split is not possible,
    a ValueError is raised.

    if `indices_or_sections` is a 1D array of sorted integers representing
    indices along `axis`, the array will be divided such that each index
    marks the start of each sub-array. If an index exceeds the dimension of
    the array along `axis`, and empty sub-array is returned for that index.
axis : integer, optional
  the axis along which to split.  Default is 0.

Returns
-------
sub-arrays : list
    A list of sub-arrays.

See Also
--------
array_split : Split an array into a list of multiple sub-arrays
              of near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
hsplit : Split array into a list of multiple sub-arrays horizontally
vsplit : Split array into a list of multiple sub-arrays vertically
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise)
vstack : Stack arrays in sequence vertically (row wise)
dstack : Stack arrays in sequence depth wise (along third dimension)

Notes
-----
`dsplit` requires that sub-arrays are of equal shape, whereas
`array_split` allows for sub-arrays to have nearly-equal shape.
Equivalent to `split` with `axis` = 2.

Examples
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> np.dsplit(x, 2)
<BLANKLINE>
[array([[[  0.,   1.],
        [  4.,   5.]],
<BLANKLINE>
       [[  8.,   9.],
        [ 12.,  13.]]]),
 array([[[  2.,   3.],
        [  6.,   7.]],
<BLANKLINE>
       [[ 10.,  11.],
        [ 14.,  15.]]])]
<BLANKLINE>
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> np.dsplit(x, array([3, 6]))
<BLANKLINE>
[array([[[  0.,   1.,   2.],
        [  4.,   5.,   6.]],
<BLANKLINE>
       [[  8.,   9.,  10.],
        [ 12.,  13.,  14.]]]),
 array([[[  3.],
        [  7.]],
<BLANKLINE>
       [[ 11.],
        [ 15.]]]),
 array([], dtype=float64)]

>>> from numpy import *
>>> a = array([[1,2],[3,4]])
>>> b = dstack((a,a,a,a))
>>> b.shape                                             # stacking in depth: for k in (0,..,3): b[:,:,k] = a
(2, 2, 4)
>>> c = dsplit(b,2)                                    # split, depth-wise, in 2 equal parts
>>> print c[0].shape, c[1].shape                       # for k in (0,1): c[0][:,:,k] = a   and c[1][:,:,k] = a
(2, 2, 2) (2, 2, 2)
>>> d = dsplit(b,[1,2])                               # split before [:,:,1] and before [:,:,2]
>>> print d[0].shape, d[1].shape, d[2].shape          # for any of the parts: d[.][:,:,k] = a
(2, 2, 1) (2, 2, 1) (2, 2, 2)

See also: split, array_split, hsplit, vsplit, dstack

dstack()

numpy.dstack(tup)

Stack arrays in sequence depth wise (along third axis)

Takes a sequence of arrays and stack them along the third axis
to make a single array. Rebuilds arrays divided by ``dsplit``.
This is a simple way to stack 2D arrays (images) into a single
3D array for processing.

Parameters
----------
tup : sequence of arrays
    Arrays to stack. All of them must have the same shape along all
    but the third axis.

Returns
-------
stacked : ndarray
    The array formed by stacking the given arrays.

See Also
--------
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join arrays.
dsplit : Split array along third axis.

Notes
-----
Equivalent to ``np.concatenate(tup, axis=2)``

Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
        [2, 3],
        [3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
<BLANKLINE>
       [[2, 3]],
<BLANKLINE>
       [[3, 4]]])

>>> from numpy import *
>>> a = array([[1,2],[3,4]])          # shapes of a and b can only differ in the 3rd dimension (if present)
>>> b = array([[5,6],[7,8]])
>>> dstack((a,b))                     # stack arrays along a third axis (depth wise)
array([[[1, 5],
[2, 6]],
[[3, 7],
[4, 8]]])

See also: column_stack, concatenate, hstack, vstack, dsplit

dtype() or .dtype

numpy.dtype(...)

Create a data type.

A numpy array is homogeneous, and contains elements described by a
dtype.  A dtype can be constructed from different combinations of
fundamental numeric types, as illustrated below.

Examples
--------

Using array-scalar type:
>>> np.dtype(np.int16)
dtype('int16')

Record, one field name 'f1', containing int16:
>>> np.dtype([('f1', np.int16)])
dtype([('f1', '<i2')])

Record, one field named 'f1', in itself containing a record with one field:
>>> np.dtype([('f1', [('f1', np.int16)])])
dtype([('f1', [('f1', '<i2')])])

Record, two fields: the first field contains an unsigned int, the
second an int32:
>>> np.dtype([('f1', np.uint), ('f2', np.int32)])
dtype([('f1', '<u4'), ('f2', '<i4')])

Using array-protocol type strings:
>>> np.dtype([('a','f8'),('b','S10')])
dtype([('a', '<f8'), ('b', '|S10')])

Using comma-separated field formats.  The shape is (2,3):
>>> np.dtype("i4, (2,3)f8")
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])

Using tuples.  ``int`` is a fixed type, 3 the field's shape.  ``void``
is a flexible type, here of size 10:
>>> np.dtype([('hello',(np.int,3)),('world',np.void,10)])
dtype([('hello', '<i4', 3), ('world', '|V10')])

Subdivide ``int16`` into 2 ``int8``'s, called x and y.  0 and 1 are
the offsets in bytes:
>>> np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

Using dictionaries.  Two fields named 'gender' and 'age':
>>> np.dtype({'names':['gender','age'], 'formats':['S1',np.uint8]})
dtype([('gender', '|S1'), ('age', '|u1')])

Offsets in bytes, here 0 and 25:
>>> np.dtype({'surname':('S25',0),'age':(np.uint8,25)})
dtype([('surname', '|S25'), ('age', '|u1')])

ndarray.dtype

Data-type for the array.

>>> from numpy import *
>>> dtype('int16')                                        # using array-scalar type
dtype('int16')
>>> dtype([('f1', 'int16')])                              # record, 1 field named 'f1', containing int16
dtype([('f1', '<i2')])
>>> dtype([('f1', [('f1', 'int16')])])                    # record, 1 field named 'f1' containing a record that has 1 field.
dtype([('f1', [('f1', '<i2')])])
>>> dtype([('f1', 'uint'), ('f2', 'int32')])              # record with 2 fields: field 1 contains an unsigned int, 2nd field an int32
dtype([('f1', '<u4'), ('f2', '<i4')])
>>> dtype([('a','f8'),('b','S10')])                       # using array-protocol type strings
dtype([('a', '<f8'), ('b', '|S10')])
>>> dtype("i4, (2,3)f8")                                  # using comma-separated field formats. (2,3) is the shape
dtype([('f0', '<i4'), ('f1', '<f8', (2, 3))])
>>> dtype([('hello',('int',3)),('world','void',10)])      # using tuples. int is fixed-type: 3 is shape; void is flex-type: 10 is size.
dtype([('hello', '<i4', 3), ('world', '|V10')])
>>> dtype(('int16', {'x':('int8',0), 'y':('int8',1)}))    # subdivide int16 in 2 int8, called x and y. 0 and 1 are the offsets in bytes
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))
>>> dtype({'names':['gender','age'], 'formats':['S1',uint8]})  # using dictionaries. 2 fields named 'gender' and 'age'
dtype([('gender', '|S1'), ('age', '|u1')])
>>> dtype({'surname':('S25',0),'age':(uint8,25)})         # 0 and 25 are offsets in bytes
dtype([('surname', '|S25'), ('age', '|u1')])
>>>
>>> a = dtype('int32')
>>> a
dtype('int32')
>>> a.type                                                # type object
<type 'numpy.int32'>
>>> a.kind                                                # character code (one of 'biufcSUV') to identify general type
'i'
>>> a.char                                                # unique char code of each of the 21 built-in types
'l'
>>> a.num                                                 # unique number of each of the 21 built-in types
7
>>> a.str                                                 # array-protocol typestring
'<i4'
>>> a.name                                                # name of this datatype
'int32'
>>> a.byteorder                                           # '=':native, '<':little endian, '>':big endian, '|':not applicable
'='
>>> a.itemsize                                            # item size in bytes
4
>>> a = dtype({'surname':('S25',0),'age':(uint8,25)})
>>> a.fields.keys()
['age', 'surname']
>>> a.fields.values()
[(dtype('uint8'), 25), (dtype('|S25'), 0)]
>>> a = dtype([('x', 'f4'),('y', 'f4'),                   # nested field
...     ('nested', [('i', 'i2'),('j','i2')])])
>>> a.fields['nested']                                    # access nested fields
(dtype([('i', '<i2'), ('j', '<i2')]), 8)
>>> a.fields['nested'][0].fields['i']                     # access nested fields
(dtype('int16'), 0)
>>> a.fields['nested'][0].fields['i'][0].type
<type 'numpy.int16'>

See also: array, typeDict, astype

dump()

ndarray.dump(...)

a.dump(file)

Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

Parameters
----------
file : str
    A string naming the dump file.

dumps()

ndarray.dumps(...)

a.dumps()

Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

ediff1d()

numpy.ediff1d(ary, to_end=None, to_begin=None)

The differences between consecutive elements of an array.

Parameters
----------
ary : array
    This array will be flattened before the difference is taken.
to_end : number, optional
    If provided, this number will be tacked onto the end of the returned
    differences.
to_begin : number, optional
    If provided, this number will be taked onto the beginning of the
    returned differences.

Returns
-------
ed : array
    The differences. Loosely, this will be (ary[1:] - ary[:-1]).

empty()

numpy.empty(...)

empty(shape, dtype=float, order='C')

Return a new array of given shape and type, without initialising entries.

Parameters
----------
shape : {tuple of int, int}
    Shape of the empty array
dtype : data-type, optional
    Desired output data-type.
order : {'C', 'F'}, optional
    Whether to store multi-dimensional data in C (row-major) or
    Fortran (column-major) order in memory.

See Also
--------
empty_like, zeros

Notes
-----
`empty`, unlike `zeros`, does not set the array values to zero,
and may therefore be marginally faster.  On the other hand, it requires
the user to manually set all the values in the array, and should be
used with caution.

Examples
--------
>>> np.empty([2, 2])
array([[ -9.74499359e+001,   6.69583040e-309],  #random data
       [  2.13182611e-314,   3.06959433e-309]])

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],  #random data
       [  496041986,    19249760]])

>>> from numpy import *
>>> empty(3)                                                               # uninitialized array, size=3, dtype = float
array([  6.08581638e+000,   3.45845952e-323,   4.94065646e-324])
>>> empty((2,3),int)                                                       # uninitialized array, dtype = int
array([[1075337192, 1075337192,  135609024],
[1084062604, 1197436517, 1129066306]])

See also: ones, zeros, eye, identity

empty_like()

numpy.empty_like(a)

Create a new array with the same shape and type as another.

Parameters
----------
a : ndarray
    Returned array will have same shape and type as `a`.

See Also
--------
zeros_like, ones_like, zeros, ones, empty

Notes
-----
This function does *not* initialize the returned array; to do that use
`zeros_like` or `ones_like` instead.

Examples
--------
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.empty_like(a)
>>> np.empty_like(a)
array([[-1073741821, -1067702173,       65538],    #random data
       [      25670,    23454291,       71800]])

>>> from numpy import *
>>> a = array([[1,2,3],[4,5,6]])
>>> empty_like(a)                                            # uninitialized array with the same shape and datatype as 'a'
array([[        0,  25362433,   6571520],
[    21248, 136447968,         4]])

See also: ones_like, zeros_like

equal()

numpy.equal(...)

y = equal(x1,x2)

Returns elementwise x1 == x2 in a bool array.

Parameters
----------
x1, x2 : array_like
    Input arrays of the same shape.

Returns
-------
out : boolean
    The elementwise test `x1` == `x2`.

exp()

numpy.exp(...)

y = exp(x)

Calculate the exponential of the elements in the input array.

Parameters
----------
x : array_like
    Input values.

Returns
-------
out : ndarray
    Element-wise exponential of `x`.

Notes
-----
The irrational number ``e`` is also known as Euler's number.  It is
approximately 2.718281, and is the base of the natural logarithm,
``ln`` (this means that, if :math:`x = \ln y = \log_e y`,
then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.

For complex arguments, ``x = a + ib``, we can write
:math:`e^x = e^a e^{ib}`.  The first term, :math:`e^a`, is already
known (it is the real argument, described above).  The second term,
:math:`e^{ib}`, is :math:`\cos b + i \sin b`, a function with magnitude
1 and a periodic phase.

References
----------
.. [1] Wikipedia, "Exponential function",
       http://en.wikipedia.org/wiki/Exponential_function
.. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions
       with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69,
       http://www.math.sfu.ca/~cbm/aands/page_69.htm

Examples
--------
Plot the magnitude and phase of ``exp(x)`` in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100)
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane
>>> out = np.exp(xx)

>>> plt.subplot(121)
>>> plt.imshow(np.abs(out),
...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122)
>>> plt.imshow(np.angle(out),
...            extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi])
>>> plt.title('Phase (angle) of exp(x)')
>>> plt.show()

expand_dims()

numpy.expand_dims(a, axis)

Expand the shape of an array.

Insert a new axis, corresponding to a given position in the array shape.

Parameters
----------
a : array_like
    Input array.
axis : int
    Position (amongst axes) where new axis is to be inserted.

Returns
-------
res : ndarray
    Output array. The number of dimensions is one greater than that of
    the input array.

See Also
--------
doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples
--------
>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to ``x[np.newaxis,:]`` or ``x[np.newaxis]``:

>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)

>>> y = np.expand_dims(x, axis=1)  # Equivalent to x[:,newaxis]
>>> y
array([[1],
       [2]])
>>> y.shape
(2, 1)

Note that some examples may use ``None`` instead of ``np.newaxis``.  These
are the same objects:

>>> np.newaxis is None
True

>>> from numpy import *
>>> x = array([1,2])
>>> expand_dims(x,axis=0)                           # Equivalent to x[newaxis,:] or x[None] or x[newaxis]
array([[1, 2]])
>>> expand_dims(x,axis=1)                           # Equivalent to x[:,newaxis]
array([[1],
[2]])

See also: newaxis, atleast_1d, atleast_2d, atleast_3d

expm1()

numpy.expm1(...)

y = expm1(x)

Return the exponential of the elements in the array minus one.

Parameters
----------
x : array_like
    Input values.

Returns
-------
out : ndarray
    Element-wise exponential minus one: ``out=exp(x)-1``.

See Also
--------
log1p : ``log(1+x)``, the inverse of expm1.


Notes
-----
This function provides greater precision than using ``exp(x)-1``
for small values of `x`.

Examples
--------
Since the series expansion of ``e**x = 1 + x + x**2/2! + x**3/3! + ...``,
for very small `x` we expect that ``e**x -1 ~ x + x**2/2``:

>>> np.expm1(1e-10)
1.00000000005e-10
>>> np.exp(1e-10) - 1
1.000000082740371e-10

extract()

numpy.extract(condition, arr)

Return the elements of an array that satisfy some condition.

This is equivalent to ``np.compress(ravel(condition), ravel(arr))``.  If
`condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.

Parameters
----------
condition : array_like
    An array whose nonzero or True entries indicate the elements of `arr`
    to extract.
arr : array_like
    Input array of the same size as `condition`.

See Also
--------
take, put, putmask

Examples
--------
>>> arr = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
>>> arr
array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12]])
>>> condition = np.mod(arr, 3)==0
>>> condition
array([[False, False,  True, False],
       [False,  True, False, False],
       [ True, False, False,  True]], dtype=bool)
>>> np.extract(condition, arr)
array([ 3,  6,  9, 12])

If `condition` is boolean:

>>> arr[condition]
array([ 3,  6,  9, 12])

eye()

numpy.eye(N, M=None, k=0, dtype=<type 'float'>)

Return a 2-D array with ones on the diagonal and zeros elsewhere.

Parameters
----------
N : int
  Number of rows in the output.
M : int, optional
  Number of columns in the output. If None, defaults to `N`.
k : int, optional
  Index of the diagonal: 0 refers to the main diagonal, a positive value
  refers to an upper diagonal, and a negative value to a lower diagonal.
dtype : dtype, optional
  Data-type of the returned array.

Returns
-------
I : ndarray (N,M)
  An array where all elements are equal to zero, except for the `k`-th
  diagonal, whose values are equal to one.

See Also
--------
diag : Return a diagonal 2-D array using a 1-D array specified by the user.

Examples
--------
>>> np.eye(2, dtype=int)
array([[1, 0],
       [0, 1]])
>>> np.eye(3, k=1)
array([[ 0.,  1.,  0.],
       [ 0.,  0.,  1.],
       [ 0.,  0.,  0.]])

>>> from numpy import *
>>> eye(3,4,0,dtype=float)              # a 3x4 matrix containing zeros except for the 0th diagonal that contains ones
array([[ 1.,  0.,  0.,  0.],
[ 0.,  1.,  0.,  0.],
[ 0.,  0.,  1.,  0.]])
>>> eye(3,4,1,dtype=float)             # a 3x4 matrix containing zeros except for the 1st diagonal that contains ones
array([[ 0.,  1.,  0.,  0.],
[ 0.,  0.,  1.,  0.],
[ 0.,  0.,  0.,  1.]])

See also: ones, zeros, empty, identity

fabs()

numpy.fabs(...)

y = fabs(x)

Compute the absolute values elementwise.

This function returns the absolute values (positive magnitude) of the data
in `x`. Complex values are not handled, use `absolute` to find the
absolute values of complex data.

Parameters
----------
x : array_like
    The array of numbers for which the absolute values are required. If
    `x` is a scalar, the result `y` will also be a scalar.

Returns
-------
y : {ndarray, scalar}
    The absolute values of `x`, the returned values are always floats.

See Also
--------
absolute : Absolute values including `complex` types.

Examples
--------
>>> np.fabs(-1)
1.0
>>> np.fabs([-1.2, 1.2])
array([ 1.2,  1.2])

fastCopyAndTranspose()

numpy.fastCopyAndTranspose(...)

_fastCopyAndTranspose(a)

fft

numpy.fft

Core FFT routines
==================

 Standard FFTs

   fft
   ifft
   fft2
   ifft2
   fftn
   ifftn

 Real FFTs

   rfft
   irfft
   rfft2
   irfft2
   rfftn
   irfftn

 Hermite FFTs

   hfft
   ihfft

>>> from numpy import *
>>> from numpy.fft import *
>>> signal = array([-2.,  8., -6.,  4.,  1., 0.,  3.,  5.])    # could also be complex
>>> fourier = fft(signal)
>>> fourier
array([ 13.         +0.j        ,   3.36396103 +4.05025253j,
2.         +1.j        ,  -9.36396103-13.94974747j,
-21.         +0.j        ,  -9.36396103+13.94974747j,
2.         -1.j        ,   3.36396103 -4.05025253j])
>>>
>>> N = len(signal)
>>> fourier = empty(N,complex)
>>> for k in range(N):                                         # equivalent but much slower
...    fourier[k] = sum(signal * exp(-1j*2*pi*k*arange(N)/N))
...
>>> timestep = 0.1                                             # if unit=day -> freq unit=cycles/day
>>> fftfreq(N, d=timestep)                                     # freqs corresponding to 'fourier'
array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

See also: ifft, fftfreq, fftshift

fftfreq

>>> from numpy import *
>>> from numpy.fft import *
>>> signal = array([-2.,  8., -6.,  4.,  1., 0.,  3.,  5.])
>>> fourier = fft(signal)
>>> N = len(signal)
>>> timestep = 0.1                                             # if unit=day -> freq unit=cycles/day
>>> freq = fftfreq(N, d=timestep)                              # freqs corresponding to 'fourier'
>>> freq
array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])
>>>
>>> fftshift(freq)                                             # freqs in ascending order
array([-5.  , -3.75, -2.5 , -1.25,  0.  ,  1.25,  2.5 ,  3.75])

See also: fft, ifft, fftshift

fftshift

>>> from numpy import *
>>> from numpy.fft import *
>>> signal = array([-2.,  8., -6.,  4.,  1., 0.,  3.,  5.])
>>> fourier = fft(signal)
>>> N = len(signal)
>>> timestep = 0.1                                             # if unit=day -> freq unit=cycles/day
>>> freq = fftfreq(N, d=timestep)                              # freqs corresponding to 'fourier'
>>> freq
array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])
>>>
>>> freq = fftshift(freq)                                      # freqs in ascending order
>>> freq
array([-5.  , -3.75, -2.5 , -1.25,  0.  ,  1.25,  2.5 ,  3.75])
>>> fourier = fftshift(fourier)                                # adjust fourier to new freq order
>>>
>>> freq = ifftshift(freq)                                     # undo previous frequency shift
>>> fourier = ifftshift(fourier)                               # undo previous fourier shift

See also: fft, ifft, fftfreq

fill()

ndarray.fill(...)

a.fill(value)

Fill the array with a scalar value.

Parameters
----------
a : ndarray
    Input array
value : scalar
    All elements of `a` will be assigned this value.

Examples
--------
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1.,  1.])

>>> from numpy import *
>>> a = arange(4, dtype=int)
>>> a
array([0, 1, 2, 3])
>>> a.fill(7)                               # replace all elements with the number 7
>>> a
array([7, 7, 7, 7])
>>> a.fill(6.5)                             # fill value is converted to dtype of a
>>> a
array([6, 6, 6, 6])

See also: empty, zeros, ones, repeat

find_common_type()

numpy.find_common_type(array_types, scalar_types)

Determine common type following standard coercion rules

Parameters
----------
array_types : sequence
    A list of dtype convertible objects representing arrays
scalar_types : sequence
    A list of dtype convertible objects representing scalars

Returns
-------
datatype : dtype
    The common data-type which is the maximum of the array_types
    ignoring the scalar_types unless the maximum of the scalar_types
    is of a different kind.

    If the kinds is not understood, then None is returned.

See Also
--------
dtype

finfo()

numpy.finfo(...)

finfo(dtype)

Machine limits for floating point types.

Attributes
----------
eps : floating point number of the appropriate type
    The smallest representable number such that ``1.0 + eps != 1.0``.
epsneg : floating point number of the appropriate type
    The smallest representable number such that ``1.0 - epsneg != 1.0``.
iexp : int
    The number of bits in the exponent portion of the floating point
    representation.
machar : MachAr
    The object which calculated these parameters and holds more detailed
    information.
machep : int
    The exponent that yields ``eps``.
max : floating point number of the appropriate type
    The largest representable number.
maxexp : int
    The smallest positive power of the base (2) that causes overflow.
min : floating point number of the appropriate type
    The smallest representable number, typically ``-max``.
minexp : int
    The most negative power of the base (2) consistent with there being
    no leading 0s in the mantissa.
negep : int
    The exponent that yields ``epsneg``.
nexp : int
    The number of bits in the exponent including its sign and bias.
nmant : int
    The number of bits in the mantissa.
precision : int
    The approximate number of decimal digits to which this kind of float
    is precise.
resolution : floating point number of the appropriate type
    The approximate decimal resolution of this type, i.e.
    ``10**-precision``.
tiny : floating point number of the appropriate type
    The smallest-magnitude usable number.

Parameters
----------
dtype : floating point type, dtype, or instance
    The kind of floating point data type to get information about.

See Also
--------
numpy.lib.machar.MachAr :
    The implementation of the tests that produce this information.
iinfo :
    The equivalent for integer data types.

Notes
-----
For developers of numpy: do not instantiate this at the module level. The
initial calculation of these parameters is expensive and negatively impacts
import times. These objects are cached, so calling ``finfo()`` repeatedly
inside your functions is not a problem.

>>> from numpy import *
>>> f = finfo(float)                                           # the numbers given are machine dependent
>>> f.nmant, f.nexp                                            # nr of bits in the mantissa and in the exponent
(52, 11)
>>> f.machep                                                   # most negative n so that 1.0 + 2**n != 1.0
-52
>>> f.eps                                                      # floating point precision: 2**machep
array(2.2204460492503131e-16)
>>> f.precision                                                # nr of precise decimal digits: int(-log10(eps))
15
>>> f.resolution                                               # 10**(-precision)
array(1.0000000000000001e-15)
>>> f.negep                                                    # most negative n so that 1.0 - 2**n != 1.0
-53
>>> f.epsneg                                                   # floating point precision: 2**negep
array(1.1102230246251565e-16)
>>> f.minexp                                                   # most negative n so that 2**n gives normal numbers
-1022
>>> f.tiny                                                     # smallest usuable floating point nr: 2**minexp
array(2.2250738585072014e-308)
>>> f.maxexp                                                   # smallest positive n so that 2**n causes overflow
1024
>>> f.min, f.max                                               # the most negative and most positive usuable floating number
(-1.7976931348623157e+308, array(1.7976931348623157e+308))

fix()

numpy.fix(x, y=None)

Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.

Parameters
----------
x : array_like
    An array of floats to be rounded
y : ndarray, optional
    Output array

Returns
-------
out : ndarray of floats
    The array of rounded numbers

See Also
--------
floor : Round downwards
around : Round to given number of decimals

Examples
--------
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2.,  2., -2., -2.])

>>> from numpy import *
>>> a = array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7])
>>> fix(a)                                                    # round a to nearest integer towards zero
array([-1., -1.,  0.,  0.,  1.,  1.])

See also: round_, ceil, floor, astype

flat

ndarray.flat

A 1-d flat iterator.

Examples
--------
>>> x = np.arange(3*4*5)
>>> x.shape = (3,4,5)
>>> x.flat[19]
19
>>> x.T.flat[19]
31

>>> from numpy import *
>>> a = array([[10,30],[40,60]])
>>> iter = a.flat                    # .flat returns an iterator
>>> iter.next()                      # cycle through array with .next()
10
>>> iter.next()
30
>>> iter.next()
40

See also: broadcast, flatten

flatnonzero()

numpy.flatnonzero(a)

Return indices that are non-zero in the flattened version of a.

This is equivalent to a.ravel().nonzero()[0].

Parameters
----------
a : ndarray
    Input array.

Returns
-------
res : ndarray
    Output array, containing the indices of the elements of `a.ravel()`
    that are non-zero.

See Also
--------
nonzero : Return the indices of the non-zero elements of the input array.
ravel : Return a 1-D array containing the elements of the input array.

Examples
--------
>>> x = np.arange(-2, 3)
>>> x
array([-2, -1,  0,  1,  2])
>>> np.flatnonzero(x)
array([0, 1, 3, 4])

>>> x.ravel()[np.flatnonzero(x)]
array([-2, -1,  1,  2])

flatten()

ndarray.flatten(...)

a.flatten(order='C')

Collapse an array into one dimension.

Parameters
----------
order : {'C', 'F'}, optional
    Whether to flatten in C (row-major) or Fortran (column-major) order.
    The default is 'C'.

Returns
-------
y : ndarray
    A copy of the input array, flattened to one dimension.

Examples
--------
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

>>> from numpy import *
>>> a = array([[[1,2]],[[3,4]]])
>>> print a
[[[1 2]]
[[3 4]]]
>>> b = a.flatten()                      # b is now a 1-d version of a, a new array, not a reference
>>> print b
[1 2 3 4]

See also: ravel, flat

fliplr()

numpy.fliplr(m)

Left-right flip.

Flip the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before.

Parameters
----------
m : array_like
    Input array.

Returns
-------
f : ndarray
    A view of `m` with the columns reversed.  Since a view
    is returned, this operation is :math:`\mathcal O(1)`.

See Also
--------
flipud : Flip array in the up/down direction.
rot90 : Rotate array counterclockwise.

Notes
-----
Equivalent to A[::-1,...]. Does not require the array to be
two-dimensional.

Examples
--------
>>> A = np.diag([1.,2.,3.])
>>> A
array([[ 1.,  0.,  0.],
       [ 0.,  2.,  0.],
       [ 0.,  0.,  3.]])
>>> np.fliplr(A)
array([[ 0.,  0.,  1.],
       [ 0.,  2.,  0.],
       [ 3.,  0.,  0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(numpy.fliplr(A)==A[:,::-1,...])
True

>>> from numpy import *
>>> a = arange(12).reshape(4,3)
>>> a
array([[ 0,  1,  2],
[ 3,  4,  5],
[ 6,  7,  8],
[ 9, 10, 11]])
>>> fliplr(a)                     # flip left-right
array([[ 2,  1,  0],
[ 5,  4,  3],
[ 8,  7,  6],
[11, 10,  9]])

See also: flipud, rot90

flipud()

numpy.flipud(m)

Up-down flip.

Flip the entries in each column in the up/down direction.
Rows are preserved, but appear in a different order than before.

Parameters
----------
m : array_like
    Input array.

Returns
-------
out : array_like
    A view of `m` with the rows reversed.  Since a view is
    returned, this operation is :math:`\mathcal O(1)`.

Notes
-----
Equivalent to ``A[::-1,...]``.
Does not require the array to be two-dimensional.

Examples
--------
>>> A = np.diag([1.0, 2, 3])
>>> A
array([[ 1.,  0.,  0.],
       [ 0.,  2.,  0.],
       [ 0.,  0.,  3.]])
>>> np.flipud(A)
array([[ 0.,  0.,  3.],
       [ 0.,  2.,  0.],
       [ 1.,  0.,  0.]])

>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A)==A[::-1,...])
True

>>> np.flipud([1,2])
array([2, 1])

>>> from numpy import *
>>> a = arange(12).reshape(4,3)
>>> a
array([[ 0,  1,  2],
[ 3,  4,  5],
[ 6,  7,  8],
[ 9, 10, 11]])
>>> flipud(a)                       # flip up-down
array([[ 9, 10, 11],
[ 6,  7,  8],
[ 3,  4,  5],
[ 0,  1,  2]])

See also: fliplr, rot90

floor()

numpy.floor(...)

y = floor(x)

Return the floor of the input, element-wise.

The floor of the scalar `x` is the largest integer `i`, such that
`i <= x`.  It is often denoted as :math:`\lfloor x \rfloor`.

Parameters
----------
x : array_like
    Input data.

Returns
-------
y : {ndarray, scalar}
    The floor of each element in `x`.

Notes
-----
Some spreadsheet programs calculate the "floor-towards-zero", in other
words ``floor(-2.5) == -2``.  NumPy, however, uses the a definition of
`floor` such that `floor(-2.5) == -3``.

Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1.,  0.,  1.,  1.,  2.])

>>> from numpy import *
>>> a = array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7])
>>> floor(a)
array([-2., -2., -1.,  0.,  1.,  1.])                      # nearest integer smaller-than or equal to a                                   # nearest integers greater-than or equal to a

See also: ceil, round_, fix, astype

floor_divide()

numpy.floor_divide(...)

y = floor_divide(x1,x2)

Return the largest integer smaller or equal to the division of the inputs.

Parameters
----------
x1 : array_like
    Numerator.
x2 : array_like
    Denominator.

Returns
-------
y : ndarray
    y = floor(`x1`/`x2`)


See Also
--------
divide : Standard division.
floor : Round a number to the nearest integer toward minus infinity.
ceil : Round a number to the nearest integer toward infinity.

Examples
--------
>>> np.floor_divide(7,3)
2
>>> np.floor_divide([1., 2., 3., 4.], 2.5)
array([ 0.,  0.,  1.,  1.])

fmod()

numpy.fmod(...)

y = fmod(x1,x2)

Return the remainder of division.

This is the NumPy implementation of the C modulo operator `%`.

Parameters
----------
x1 : array_like
  Dividend.
x2 : array_like
  Divisor.

Returns
-------
y : array_like
  The remainder of the division of `x1` by `x2`.

See Also
--------
mod : Modulo operation where the quotient is `floor(x1,x2)`.

Notes
-----
The result of the modulo operation for negative dividend and divisors is
bound by conventions. In `fmod`, the sign of the remainder is the sign of
the dividend, and the sign of the divisor has no influence on the results.

Examples
--------
>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1,  0, -1,  1,  0,  1])

>>> np.mod([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])

frexp()

numpy.frexp(...)

y1,y2 = frexp(x)

Split the number, x, into a normalized fraction (y1) and exponent (y2)

fromarrays()

numpy.core.records.fromarrays(arrayList, dtype=None, shape=None, formats=None, names=None, titles=None, aligned=False, byteorder=None)

create a record array from a (flat) list of arrays

>>> x1=np.array([1,2,3,4])
>>> x2=np.array(['a','dd','xyz','12'])
>>> x3=np.array([1.1,2,3,4])
>>> r = np.core.records.fromarrays([x1,x2,x3],names='a,b,c')
>>> print r[1]
(2, 'dd', 2.0)
>>> x1[1]=34
>>> r.a
array([1, 2, 3, 4])

>>> from numpy import *
>>> x = array(['Smith','Johnson','McDonald'])                              # datatype is string
>>> y = array(['F','F','M'], dtype='S1')                                   # datatype is a single character
>>> z = array([20,25,23])                                                  # datatype is integer
>>> data = rec.fromarrays([x,y,z], names='surname, gender, age')               # convert to record array
>>> data[0]
('Smith', 'F', 20)
>>> data.age                                                               # names are available as attributes
array([20, 25, 23])

See also: view

frombuffer()

numpy.frombuffer(...)

frombuffer(buffer, dtype=float, count=-1, offset=0)

Interpret a buffer as a 1-dimensional array.

Parameters
----------
buffer
    An object that exposes the buffer interface.
dtype : data-type, optional
    Data type of the returned array.
count : int, optional
    Number of items to read. ``-1`` means all data in the buffer.
offset : int, optional
    Start reading the buffer from this offset.

Notes
-----
If the buffer has data that is not in machine byte-order, this
should be specified as part of the data-type, e.g.::

  >>> dt = np.dtype(int)
  >>> dt = dt.newbyteorder('>')
  >>> np.frombuffer(buf, dtype=dt)

The data of the resulting array will not be byteswapped,
but will be interpreted correctly.

Examples
--------
>>> s = 'hello world'
>>> np.frombuffer(s, dtype='S1', count=5, offset=6)
array(['w', 'o', 'r', 'l', 'd'],
      dtype='|S1')

>>> from numpy import *
>>> buffer = "\x00\x00\x00\x00\x00\x00\xf0?\x00\x00\x00\x00\x00\x00\x00@\x00\x00\x00\x00\x00\x00\x08\
... @\x00\x00\x00\x00\x00\x00\x10@\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x00\x18@"
>>> a = frombuffer(buffer, complex128)
>>> a
array([ 1.+2.j,  3.+4.j,  5.+6.j])

See also: fromfunction, fromfile

fromfile()

numpy.fromfile(...)

fromfile(file, dtype=float, count=-1, sep='')

Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type,
as well as parsing simply formatted text files.  Data written using the
`tofile` method can be read using this function.

Parameters
----------
file : file or string
    Open file object or filename.
dtype : data-type
    Data type of the returned array.
    For binary files, it is used to determine the size and byte-order
    of the items in the file.
count : int
    Number of items to read. ``-1`` means all items (i.e., the complete
    file).
sep : string
    Separator between items if file is a text file.
    Empty ("") separator means the file should be treated as binary.
    Spaces (" ") in the separator match zero or more whitespace characters.
    A separator consisting only of spaces must match at least one
    whitespace.

See also
--------
load, save
ndarray.tofile
loadtxt : More flexible way of loading data from a text file.

Notes
-----
Do not rely on the combination of `tofile` and `fromfile` for
data storage, as the binary files generated are are not platform
independent.  In particular, no byte-order or data-type information is
saved.  Data can be stored in the platform independent ``.npy`` format
using `save` and `load` instead.

Examples
--------
Construct an ndarray:

>>> dt = np.dtype([('time', [('min', int), ('sec', int)]),
...                ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

Save the raw data to disk:

>>> import os
>>> fname = os.tmpnam()
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i4'), ('sec', '<i4')]), ('temp', '<f8')])

numpy.core.records.fromfile(fd, dtype=None, shape=None, offset=0, formats=None, names=None, titles=None, aligned=False, byteorder=None)

Create an array from binary file data

If file is a string then that file is opened, else it is assumed
to be a file object.

>>> from tempfile import TemporaryFile
>>> a = np.empty(10,dtype='f8,i4,a5')
>>> a[5] = (0.5,10,'abcde')
>>>
>>> fd=TemporaryFile()
>>> a = a.newbyteorder('<')
>>> a.tofile(fd)
>>>
>>> fd.seek(0)
>>> r=np.core.records.fromfile(fd, formats='f8,i4,a5', shape=10,
... byteorder='<')
>>> print r[5]
(0.5, 10, 'abcde')
>>> r.shape
(10,)

>>> from numpy import *
>>> y = array([2.,4.,6.,8.])
>>> y.tofile("myfile.dat")                                 # binary format
>>> y.tofile("myfile.txt", sep='\n', format = "%e")        # ascii format, one column, exponential notation
>>> fromfile('myfile.dat', dtype=float)
array([ 2.,  4.,  6.,  8.])
>>> fromfile('myfile.txt', dtype=float, sep='\n')
array([ 2.,  4.,  6.,  8.])

See also: loadtxt, fromfunction, tofile, frombuffer, savetxt

fromfunction()

numpy.fromfunction(function, shape, **kwargs)

Construct an array by executing a function over each coordinate.

The resulting array therefore has a value ``fn(x, y, z)`` at
coordinate ``(x, y, z)``.

Parameters
----------
fn : callable
    The function is called with N parameters, each of which
    represents the coordinates of the array varying along a
    specific axis.  For example, if `shape` were ``(2, 2)``, then
    the parameters would be two arrays, ``[[0, 0], [1, 1]]`` and
    ``[[0, 1], [0, 1]]``.  `fn` must be capable of operating on
    arrays, and should return a scalar value.
shape : (N,) tuple of ints
    Shape of the output array, which also determines the shape of
    the coordinate arrays passed to `fn`.
dtype : data-type, optional
    Data-type of the coordinate arrays passed to `fn`.  By default,
    `dtype` is float.

See Also
--------
indices, meshgrid

Notes
-----
Keywords other than `shape` and `dtype` are passed to the function.

Examples
--------
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],
       [False,  True, False],
       [False, False,  True]], dtype=bool)

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
       [1, 2, 3],
       [2, 3, 4]])

>>> from numpy import *
>>> def f(i,j):
...     return i**2 + j**2
...
>>> fromfunction(f, (3,3))                       # evaluate functiom for all combinations of indices [0,1,2]x[0,1,2]
array([[0, 1, 4],
[1, 2, 5],
[4, 5, 8]])

See also: fromfile, frombuffer

fromiter()

numpy.fromiter(...)

fromiter(iterable, dtype, count=-1)

Create a new 1-dimensional array from an iterable object.

Parameters
----------
iterable : iterable object
    An iterable object providing data for the array.
dtype : data-type
    The data type of the returned array.
count : int, optional
    The number of items to read from iterable. The default is -1,
    which means all data is read.

Returns
-------
out : ndarray
    The output array.

Notes
-----
Specify ``count`` to improve performance.  It allows
``fromiter`` to pre-allocate the output array, instead of
resizing it on demand.

Examples
--------
>>> iterable = (x*x for x in range(5))
>>> np.fromiter(iterable, np.float)
array([  0.,   1.,   4.,   9.,  16.])

>>> from numpy import *
>>> import itertools
>>> mydata = [[55.5, 40],[60.5, 70]]                                              # List of lists
>>> mydescriptor = {'names': ('weight','age'), 'formats': (float32, int32)}       # Descriptor of the data
>>> myiterator = itertools.imap(tuple,mydata)                                     # Clever way of putting list of lists into iterator
# of tuples. E.g.: myiterator.next() == (55.5, 40.)
>>> a = fromiter(myiterator, dtype = mydescriptor)
>>> a
array([(55.5, 40), (60.5, 70)],
dtype=[('weight', '<f4'), ('age', '<i4')])

See also: fromarrays, frombuffer, fromfile, fromfunction

frompyfunc()

numpy.frompyfunc(...)

frompyfunc(func, nin, nout) take an arbitrary python function that takes nin objects as input and returns nout objects and return a universal function (ufunc).  This ufunc always returns PyObject arrays

fromregex()

numpy.fromregex(file, regexp, dtype)

Construct an array from a text file, using regular-expressions parsing.

Array is constructed from all matches of the regular expression
in the file. Groups in the regular expression are converted to fields.

Parameters
----------
file : str or file
    File name or file object to read.
regexp : str or regexp
    Regular expression used to parse the file.
    Groups in the regular expression correspond to fields in the dtype.
dtype : dtype or dtype list
    Dtype for the structured array

Examples
--------
>>> f = open('test.dat', 'w')
>>> f.write("1312 foo\n1534  bar\n444   qux")
>>> f.close()
>>> np.fromregex('test.dat', r"(\d+)\s+(...)",
...              [('num', np.int64), ('key', 'S3')])
array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')],
      dtype=[('num', '<i8'), ('key', '|S3')])

fromstring()

numpy.fromstring(...)

fromstring(string, dtype=float, count=-1, sep='')

Return a new 1d array initialized from raw binary or text data in
string.

Parameters
----------
string : str
    A string containing the data.
dtype : dtype, optional
    The data type of the array. For binary input data, the data must be
    in exactly this format.
count : int, optional
    Read this number of `dtype` elements from the data. If this is
    negative, then the size will be determined from the length of the
    data.
sep : str, optional
    If provided and not empty, then the data will be interpreted as
    ASCII text with decimal numbers. This argument is interpreted as the
    string separating numbers in the data. Extra whitespace between
    elements is also ignored.

Returns
-------
arr : array
    The constructed array.

Raises
------
ValueError
    If the string is not the correct size to satisfy the requested
    `dtype` and `count`.

Examples
--------
>>> np.fromstring('\x01\x02', dtype=np.uint8)
array([1, 2], dtype=uint8)
>>> np.fromstring('1 2', dtype=int, sep=' ')
array([1, 2])
>>> np.fromstring('1, 2', dtype=int, sep=',')
array([1, 2])
>>> np.fromstring('\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([1, 2, 3], dtype=uint8)

Invalid inputs:

>>> np.fromstring('\x01\x02\x03\x04\x05', dtype=np.int32)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: string size must be a multiple of element size
>>> np.fromstring('\x01\x02', dtype=np.uint8, count=3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: string is smaller than requested size

fv()

numpy.fv(rate, nper, pmt, pv, when='end')

Compute the future value.

Parameters
----------
rate : scalar or array_like of shape(M, )
    Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
    Number of compounding periods
pmt : scalar or array_like of shape(M, )
    Payment
pv : scalar or array_like of shape(M, )
    Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0)).
    Defaults to {'end', 0}.

Returns
-------
out : ndarray
    Future values.  If all input is scalar, returns a scalar float.  If
    any input is array_like, returns future values for each input element.
    If multiple inputs are array_like, they all must have the same shape.

Notes
-----
The future value is computed by solving the equation::

 fv +
 pv*(1+rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when ``rate == 0``::

 fv + pv + pmt * nper == 0

Examples
--------
What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100.  Assume the interest rate is
5% (annually) compounded monthly?

>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748

By convention, the negative sign represents cash flow out (i.e. money not
available today).  Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.

If any input is array_like, returns an array of equal shape.  Let's
compare different interest rates from the example above.

>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434,  16569.87435405,  17509.44688102])

generic()

numpy.generic(...)

>>> from numpy import *
>>> numpyscalar = string_('7')            # Convert to numpy scalar
>>> numpyscalar                           # Looks like a build-in scalar...
'7'
>>> type(numpyscalar)                     # ... but it isn't
<type 'numpy.string_'>
>>> buildinscalar = '7'                   # Build-in python scalar
>>> type(buildinscalar)
<type 'str'>
>>> isinstance(numpyscalar, generic)      # Check if scalar is a NumPy one
True
>>> isinstance(buildinscalar, generic)    # Example on how to recognize NumPy scalars
False

get_array_wrap()

numpy.get_array_wrap(*args)

Find the wrapper for the array with the highest priority.

In case of ties, leftmost wins. If no wrapper is found, return None

get_include()

numpy.get_include()

Return the directory that contains the numpy \*.h header files.

Extension modules that need to compile against numpy should use this
function to locate the appropriate include directory.

Notes
-----
When using ``distutils``, for example in ``setup.py``.
::

    import numpy as np
    ...
    Extension('extension_name', ...
            include_dirs=[np.get_include()])
    ...

get_numarray_include()

numpy.get_numarray_include(type=None)

Return the directory that contains the numarray \*.h header files.

Extension modules that need to compile against numarray should use this
function to locate the appropriate include directory.

Notes
-----
When using ``distutils``, for example in ``setup.py``.
::

    import numpy as np
    ...
    Extension('extension_name', ...
            include_dirs=[np.get_numarray_include()])
    ...

get_numpy_include()

numpy.get_numpy_include(*args, **kwds)

get_numpy_include is DEPRECATED!! -- use get_include instead


Return the directory that contains the numpy \*.h header files.

Extension modules that need to compile against numpy should use this
function to locate the appropriate include directory.

Notes
-----
When using ``distutils``, for example in ``setup.py``.
::

    import numpy as np
    ...
    Extension('extension_name', ...
            include_dirs=[np.get_include()])
    ...

get_printoptions()

numpy.get_printoptions()

Return the current print options.

Returns
-------
print_opts : dict
    Dictionary of current print options with keys

      - precision : int
      - threshold : int
      - edgeitems : int
      - linewidth : int
      - suppress : bool
      - nanstr : string
      - infstr : string

See Also
--------
set_printoptions : parameter descriptions

getbuffer()

numpy.getbuffer(...)

getbuffer(obj [,offset[, size]])

Create a buffer object from the given object referencing a slice of
length size starting at offset.  Default is the entire buffer. A
read-write buffer is attempted followed by a read-only buffer.

getbufsize()

numpy.getbufsize()

Return the size of the buffer used in ufuncs.

geterr()

numpy.geterr()

Get the current way of handling floating-point errors.

Returns a dictionary with entries "divide", "over", "under", and
"invalid", whose values are from the strings
"ignore", "print", "log", "warn", "raise", and "call".

geterrcall()

numpy.geterrcall()

Return the current callback function used on floating-point errors.

geterrobj()

numpy.geterrobj(...)

geterrobj()

Used internally by `geterr`.

Returns
-------
errobj : list
    Internal numpy buffer size, error mask, error callback function.

getfield()

ndarray.getfield(...)

a.getfield(dtype, offset)

Returns a field of the given array as a certain type. A field is a view of
the array data with each itemsize determined by the given type and the
offset into the current array.

gradient()

numpy.gradient(f, *varargs)

Return the gradient of an N-dimensional array.

The gradient is computed using central differences in the interior
and first differences at the boundaries. The returned gradient hence has
the same shape as the input array.

Parameters
----------
f : array_like
  An N-dimensional array containing samples of a scalar function.
`*varargs` : scalars
  0, 1, or N scalars specifying the sample distances in each direction,
  that is: `dx`, `dy`, `dz`, ... The default distance is 1.


Returns
-------
g : ndarray
  N arrays of the same shape as `f` giving the derivative of `f` with
  respect to each dimension.

Examples
--------
>>> np.gradient(np.array([[1,1],[3,4]]))
[array([[ 2.,  3.],
       [ 2.,  3.]]),
 array([[ 0.,  0.],
       [ 1.,  1.]])]

greater()

numpy.greater(...)

y = greater(x1,x2)

Return (x1 > x2) element-wise.

Parameters
----------
x1, x2 : array_like
    Input arrays.

Returns
-------
Out : {ndarray, bool}
    Output array of bools, or a single bool if `x1` and `x2` are scalars.

See Also
--------
greater_equal

Examples
--------
>>> np.greater([4,2],[2,2])
array([ True, False], dtype=bool)

If the inputs are ndarrays, then np.greater is equivalent to '>'.

>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
array([ True, False], dtype=bool)

greater_equal()

numpy.greater_equal(...)

y = greater_equal(x1,x2)

Element-wise True if first array is greater or equal than second array.

Parameters
----------
x1, x2 : array_like
    Input arrays.

Returns
-------
out : ndarray, bool
    Output array.

See Also
--------
greater, less, less_equal, equal

Examples
--------
>>> np.greater_equal([4,2],[2,2])
array([ True, True], dtype=bool)

gumbel()

numpy.random.gumbel(...)

gumbel(loc=0.0, scale=1.0, size=None)

Gumbel distribution.

Draw samples from a Gumbel distribution with specified location (or mean)
and scale (or standard deviation).

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value
Type I) distribution is one of a class of Generalized Extreme Value (GEV)
distributions used in modeling extreme value problems.  The Gumbel is a
special case of the Extreme Value Type I distribution for maximums from
distributions with "exponential-like" tails, it may be derived by
considering a Gaussian process of measurements, and generating the pdf for
the maximum values from that set of measurements (see examples).

Parameters
----------
loc : float
    The location of the mode of the distribution.
scale : float
    The scale parameter of the distribution.
size : tuple of ints
    Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
    ``m * n * k`` samples are drawn.

See Also
--------
scipy.stats.gumbel : probability density function,
    distribution or cumulative density function, etc.
weibull, scipy.stats.genextreme

Notes
-----
The probability density for the Gumbel distribution is

.. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
          \beta}},

where :math:`\mu` is the mode, a location parameter, and :math:`\beta`
is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used
very early in the hydrology literature, for modeling the occurrence of
flood events. It is also used for modeling maximum wind speed and rainfall
rates.  It is a "fat-tailed" distribution - the probability of an event in
the tail of the distribution is larger than if one used a Gaussian, hence
the surprisingly frequent occurrence of 100-year floods. Floods were
initially modeled as a Gaussian process, which underestimated the frequency
of extreme events.

It is one of a class of extreme value distributions, the Generalized
Extreme Value (GEV) distributions, which also includes the Weibull and
Frechet.

The function has a mean of :math:`\mu + 0.57721\beta` and a variance of
:math:`\frac{\pi^2}{6}\beta^2`.

References
----------
.. [1] Gumbel, E.J. (1958). Statistics of Extremes. Columbia University
       Press.
.. [2] Reiss, R.-D. and Thomas M. (2001), Statistical Analysis of Extreme
       Values, from Insurance, Finance, Hydrology and Other Fields,
       Birkhauser Verlag, Basel: Boston : Berlin.
.. [3] Wikipedia, "Gumbel distribution",
       http://en.wikipedia.org/wiki/Gumbel_distribution

Examples
--------
Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale
>>> s = np.random.gumbel(mu, beta, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
...          * np.exp( -np.exp( -(bins - mu) /beta) ),
...          linewidth=2, color='r')
>>> plt.show()

Show how an extreme value distribution can arise from a Gaussian process
and compare to a Gaussian:

>>> means = []
>>> maxima = []
>>> for i in range(0,1000) :
...    a = np.random.normal(mu, beta, 1000)
...    means.append(a.mean())
...    maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, normed=True)
>>> beta = np.std(maxima)*np.pi/np.sqrt(6)
>>> mu = np.mean(maxima) - 0.57721*beta
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
...          * np.exp(-np.exp(-(bins - mu)/beta)),
...          linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
...          linewidth=2, color='g')
>>> plt.show()

>>> from numpy import *
>>> from numpy.random import *
>>> gumbel(loc=0.0,scale=1.0,size=(2,3))        # Gumbel distribution location=0.0, scale=1.0
array([[-1.25923601,  1.68758144,  1.76620507],
[ 1.96820048, -0.21219499,  1.83579566]])
>>> from pylab import *                         # histogram plot example
>>> hist(gumbel(0,1,(1000)), 50)

See also: random_sample, uniform, poisson, seed

hamming()

numpy.hamming(M)

Return the Hamming window.

The Hamming window is a taper formed by using a weighted cosine.

Parameters
----------
M : int
    Number of points in the output window. If zero or less, an
    empty array is returned.

Returns
-------
out : ndarray
    The window, normalized to one (the value one
    appears only if the number of samples is odd).

See Also
--------
bartlett, blackman, hanning, kaiser

Notes
-----
The Hamming window is defined as

.. math::  w(n) = 0.54 + 0.46cos\left(\frac{2\pi{n}}{M-1}\right)
           \qquad 0 \leq n \leq M-1

The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
is described in Blackman and Tukey. It was recommended for smoothing the
truncated autocovariance function in the time domain.
Most references to the Hamming window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References
----------
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
       spectra, Dover Publications, New York.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
       University of Alberta Press, 1975, pp. 109-110.
.. [3] Wikipedia, "Window function",
       http://en.wikipedia.org/wiki/Window_function
.. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
       "Numerical Recipes", Cambridge University Press, 1986, page 425.

Examples
--------
>>> from numpy import hamming
>>> hamming(12)
array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594,
        0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
        0.15302337,  0.08      ])

Plot the window and the frequency response:

>>> from numpy import clip, log10, array, hamming
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = hamming(51)
>>> plt.plot(window)
>>> plt.title("Hamming window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.show()

>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = linspace(-0.5,0.5,len(A))
>>> response = 20*log10(mag)
>>> response = clip(response,-100,100)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of Hamming window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()

hanning()

numpy.hanning(M)

Return the Hanning window.

The Hanning window is a taper formed by using a weighted cosine.

Parameters
----------
M : int
    Number of points in the output window. If zero or less, an
    empty array is returned.

Returns
-------
out : ndarray, shape(M,)
    The window, normalized to one (the value one
    appears only if `M` is odd).

See Also
--------
bartlett, blackman, hamming, kaiser

Notes
-----
The Hanning window is defined as

.. math::  w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right)
           \qquad 0 \leq n \leq M-1

The Hanning was named for Julius van Hann, an Austrian meterologist. It is
also known as the Cosine Bell. Some authors prefer that it be called a
Hann window, to help avoid confusion with the very similar Hamming window.

Most references to the Hanning window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References
----------
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
       spectra, Dover Publications, New York.
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
       The University of Alberta Press, 1975, pp. 106-108.
.. [3] Wikipedia, "Window function",
       http://en.wikipedia.org/wiki/Window_function
.. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
       "Numerical Recipes", Cambridge University Press, 1986, page 425.

Examples
--------
>>> from numpy import hanning
>>> hanning(12)
array([ 0.        ,  0.07937323,  0.29229249,  0.57115742,  0.82743037,
        0.97974649,  0.97974649,  0.82743037,  0.57115742,  0.29229249,
        0.07937323,  0.        ])

Plot the window and its frequency response:

>>> from numpy.fft import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = np.hanning(51)
>>> plt.subplot(121)
>>> plt.plot(window)
>>> plt.title("Hann window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")

>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = np.linspace(-0.5,0.5,len(A))
>>> response = 20*np.log10(mag)
>>> response = np.clip(response,-100,100)
>>> plt.subplot(122)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of the Hann window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()

histogram()

numpy.histogram(a, bins=10, range=None, normed=False, weights=None, new=None)

Compute the histogram of a set of data.

Parameters
----------
a : array_like
    Input data.
bins : int or sequence of scalars, optional
    If `bins` is an int, it defines the number of equal-width
    bins in the given range (10, by default). If `bins` is a sequence,
    it defines the bin edges, including the rightmost edge, allowing
    for non-uniform bin widths.
range : (float, float), optional
    The lower and upper range of the bins.  If not provided, range
    is simply ``(a.min(), a.max())``.  Values outside the range are
    ignored. Note that with `new` set to False, values below
    the range are ignored, while those above the range are tallied
    in the rightmost bin.
normed : bool, optional
    If False, the result will contain the number of samples
    in each bin.  If True, the result is the value of the
    probability *density* function at the bin, normalized such that
    the *integral* over the range is 1. Note that the sum of the
    histogram values will often not be equal to 1; it is not a
    probability *mass* function.
weights : array_like, optional
    An array of weights, of the same shape as `a`.  Each value in `a`
    only contributes its associated weight towards the bin count
    (instead of 1).  If `normed` is True, the weights are normalized,
    so that the integral of the density over the range remains 1.
    The `weights` keyword is only available with `new` set to True.
new : {None, True, False}, optional
    Whether to use the new semantics for histogram:
      * None : the new behaviour is used, and a warning is printed,
      * True : the new behaviour is used and no warning is printed,
      * False : the old behaviour is used and a message is printed
          warning about future deprecation.

Returns
-------
hist : array
    The values of the histogram. See `normed` and `weights` for a
    description of the possible semantics.
bin_edges : array of dtype float
    Return the bin edges ``(length(hist)+1)``.
    With ``new=False``, return the left bin edges (``length(hist)``).


See Also
--------
histogramdd

Notes
-----
All but the last (righthand-most) bin is half-open.  In other words, if
`bins` is::

  [1, 2, 3, 4]

then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the
second ``[2, 3)``.  The last bin, however, is ``[3, 4]``, which *includes*
4.

Examples
--------
>>> np.histogram([1,2,1], bins=[0,1,2,3], new=True)
(array([0, 2, 1]), array([0, 1, 2, 3]))

>>> from numpy import *
>>> x = array([0.2, 6.4, 3.0, 1.6, 0.9, 2.3, 1.6, 5.7, 8.5, 4.0, 12.8])
>>> bins = array([0.0, 1.0, 2.5, 4.0, 10.0])                                         # increasing monotonically
>>> N,bins = histogram(x,bins)
>>> N,bins
(array([2, 3, 1, 4, 1]), array([  0. ,   1. ,   2.5,   4. ,  10. ]))
>>> for n in range(len(bins)):
...   if n < len(bins)-1:
...      print "# ", N[n], "numbers fall into bin [", bins[n], ",", bins[n+1], "["
...   else:
...      print "# ", N[n], "numbers fall outside the bin range"
...
#  2 numbers fall into bin [ 0.0 , 1.0 [
#  3 numbers fall into bin [ 1.0 , 2.5 [
#  1 numbers fall into bin [ 2.5 , 4.0 [
#  4 numbers fall into bin [ 4.0 , 10.0 [
#  1 numbers fall outside the bin range
>>> N,bins = histogram(x,5,range=(0.0, 10.0))                                      # 5 bin boundaries in the range (0,10)
>>> N,bins
(array([4, 2, 2, 1, 2]), array([ 0.,  2.,  4.,  6.,  8.]))
>>> N,bins = histogram(x,5,range=(0.0, 10.0), normed=True)                        # normalize histogram, i.e. divide by len(x)
>>> N,bins
(array([ 0.18181818,  0.09090909,  0.09090909,  0.04545455,  0.09090909]), array([ 0.,  2.,  4.,  6.,  8.]))

See also: bincount, digitize

histogram2d()

numpy.histogram2d(x, y, bins=10, range=None, normed=False, weights=None)

Compute the bidimensional histogram of two data samples.

Parameters
----------
x : array_like, shape(N,)
  A sequence of values to be histogrammed along the first dimension.
y : array_like, shape(M,)
  A sequence of values to be histogrammed along the second dimension.
bins : int or [int, int] or array-like or [array, array], optional
  The bin specification:

    * the number of bins for the two dimensions (nx=ny=bins),
    * the number of bins in each dimension (nx, ny = bins),
    * the bin edges for the two dimensions (x_edges=y_edges=bins),
    * the bin edges in each dimension (x_edges, y_edges = bins).

range : array_like, shape(2,2), optional
  The leftmost and rightmost edges of the bins along each dimension
  (if not specified explicitly in the `bins` parameters):
  [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be
  considered outliers and not tallied in the histogram.
normed : boolean, optional
  If False, returns the number of samples in each bin. If True, returns
  the bin density, ie, the bin count divided by the bin area.
weights : array-like, shape(N,), optional
  An array of values `w_i` weighing each sample `(x_i, y_i)`. Weights are
  normalized to 1 if normed is True. If normed is False, the values of the
  returned histogram are equal to the sum of the weights belonging to the
  samples falling into each bin.

Returns
-------
H : ndarray, shape(nx, ny)
  The bidimensional histogram of samples x and y. Values in x are
  histogrammed along the first dimension and values in y are histogrammed
  along the second dimension.
xedges : ndarray, shape(nx,)
  The bin edges along the first dimension.
yedges : ndarray, shape(ny,)
  The bin edges along the second dimension.

See Also
--------
histogram: 1D histogram
histogramdd: Multidimensional histogram

Notes
-----
When normed is True, then the returned histogram is the sample density,
defined such that:

  .. math::
    \sum_{i=0}^{nx-1} \sum_{j=0}^{ny-1} H_{i,j} \Delta x_i \Delta y_j = 1

where :math:`H` is the histogram array and :math:`\Delta x_i \Delta y_i`
the area of bin :math:`{i,j}`.

Please note that the histogram does not follow the cartesian convention
where `x` values are on the abcissa and `y` values on the ordinate axis.
Rather, `x` is histogrammed along the first dimension of the array
(vertical), and `y` along the second dimension of the array (horizontal).
This ensures compatibility with `histogrammdd`.

Examples
--------
>>> x,y = np.random.randn(2,100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins = (5, 8))
>>> H.shape, xedges.shape, yedges.shape
((5,8), (6,), (9,))

histogramdd()

numpy.histogramdd(sample, bins=10, range=None, normed=False, weights=None)

Compute the multidimensional histogram of some data.

Parameters
----------
sample : array_like
    Data to histogram passed as a sequence of D arrays of length N, or
    as an (N,D) array.
bins : sequence or int, optional
    The bin specification:

    * A sequence of arrays describing the bin edges along each dimension.
    * The number of bins for each dimension (nx, ny, ... =bins)
    * The number of bins for all dimensions (nx=ny=...=bins).

range : sequence, optional
    A sequence of lower and upper bin edges to be used if the edges are
    not given explicitely in `bins`. Defaults to the minimum and maximum
    values along each dimension.
normed : boolean, optional
    If False, returns the number of samples in each bin. If True, returns
    the bin density, ie, the bin count divided by the bin hypervolume.
weights : array_like (N,), optional
    An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
    Weights are normalized to 1 if normed is True. If normed is False, the
    values of the returned histogram are equal to the sum of the weights
    belonging to the samples falling into each bin.

Returns
-------
H : ndarray
    The multidimensional histogram of sample x. See normed and weights for
    the different possible semantics.
edges : list
    A list of D arrays describing the bin edges for each dimension.

See Also
--------
histogram: 1D histogram
histogram2d: 2D histogram

Examples
--------
>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5,8,4), 6, 9, 5)

hsplit()

numpy.hsplit(ary, indices_or_sections)

Split array into multiple sub-arrays horizontally.

Please refer to the `numpy.split` documentation.  `hsplit` is
equivalent to `numpy.split` with ``axis = 1``.

See Also
--------
split : Split array into multiple sub-arrays.

Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> np.hsplit(x, 2)
<BLANKLINE>
[array([[  0.,   1.],
       [  4.,   5.],
       [  8.,   9.],
       [ 12.,  13.]]),
 array([[  2.,   3.],
       [  6.,   7.],
       [ 10.,  11.],
       [ 14.,  15.]])]

>>> np.hsplit(x, array([3, 6]))
<BLANKLINE>
[array([[  0.,   1.,   2.],
       [  4.,   5.,   6.],
       [  8.,   9.,  10.],
       [ 12.,  13.,  14.]]),
 array([[  3.],
       [  7.],
       [ 11.],
       [ 15.]]),
 array([], dtype=float64)]

>>> from numpy import *
>>> a = array([[1,2,3,4],[5,6,7,8]])
>>> hsplit(a,2)                                  # split, column-wise, in 2 equal parts
[array([[1, 2],
[5, 6]]), array([[3, 4],
[7, 8]])]
>>> hsplit(a,[1,2])                             # split before column 1 and before column 2
[array([[1],
[5]]), array([[2],
[6]]), array([[3, 4],
[7, 8]])]

See also: split, array_split, dsplit, vsplit, hstack

hstack()

numpy.hstack(tup)

Stack arrays in sequence horizontally (column wise)

Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by ``hsplit``.

Parameters
----------
tup : sequence of ndarrays
    All arrays must have the same shape along all but the second axis.

Returns
-------
stacked : ndarray
    The array formed by stacking the given arrays.

See Also
--------
vstack : Stack along first axis.
dstack : Stack along third axis.
concatenate : Join arrays.
hsplit : Split array along second axis.

Notes
-----
Equivalent to ``np.concatenate(tup, axis=1)``

Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
       [2, 3],
       [3, 4]])

>>> from numpy import *
>>> a =array([[1],[2]])                    # 2x1 array
>>> b = array([[3,4],[5,6]])               # 2x2 array
>>> hstack((a,b,a))                        # only the 2nd dimension of the arrays is allowed to be different
array([[1, 3, 4, 1],
[2, 5, 6, 2]])

See also: column_stack, concatenate, dstack, vstack, hsplit

hypot()

numpy.hypot(...)

y = hypot(x1,x2)

Given two sides of a right triangle, return its hypotenuse.

Parameters
----------
x : array_like
  Base of the triangle.
y : array_like
  Height of the triangle.

Returns
-------
z : ndarray
  Hypotenuse of the triangle: sqrt(x**2 + y**2)

Examples
--------
>>> np.hypot(3,4)
5.0

>>> from numpy import *
>>> hypot(3.,4.)                              # hypothenusa: sqrt(3**2 + 4**2) = 5
5.0
>>> z = array([2+3j, 3+4j])
>>> hypot(z.real, z.imag)                     # norm of complex numbers
array([ 3.60555128,  5.        ])

See also: angle, abs

i0()

numpy.i0(x)

Modified Bessel function of the first kind, order 0.

Usually denoted :math:`I_0`.

Parameters
----------
x : array_like, dtype float or complex
    Argument of the Bessel function.

Returns
-------
out : ndarray, shape z.shape, dtype z.dtype
    The modified Bessel function evaluated at the elements of `x`.

See Also
--------
scipy.special.iv, scipy.special.ive

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 374. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Bessel function",
       http://en.wikipedia.org/wiki/Bessel_function

Examples
--------
>>> np.i0([0.])
array(1.0)
>>> np.i0([0., 1. + 2j])
array([ 1.00000000+0.j        ,  0.18785373+0.64616944j])

identity()

numpy.identity(n, dtype=None)

Return the identity array.

The identity array is a square array with ones on
the main diagonal.

Parameters
----------
n : int
    Number of rows (and columns) in `n` x `n` output.
dtype : data-type, optional
    Data-type of the output.  Defaults to ``float``.

Returns
-------
out : ndarray
    `n` x `n` array with its main diagonal set to one,
    and all other elements 0.

Examples
--------
>>> np.identity(3)
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])

>>> from numpy import *
>>> identity(3,float)
array([[ 1.,  0.,  0.],
[ 0.,  1.,  0.],
[ 0.,  0.,  1.]])

See also: empty, eye, ones, zeros

ifft

>>> from numpy import *
>>> from numpy.fft import *
>>> signal = array([-2.,  8., -6.,  4.,  1., 0.,  3.,  5.])
>>> fourier = fft(signal)
>>> ifft(fourier)                                                    # Inverse fourier transform
array([-2. +0.00000000e+00j,  8. +1.51410866e-15j, -6. +3.77475828e-15j,
4. +2.06737026e-16j,  1. +0.00000000e+00j,  0. -1.92758271e-15j,
3. -3.77475828e-15j,  5. +2.06737026e-16j])
>>>
>>> allclose(signal.astype(complex), ifft(fft(signal)))              # ifft(fft()) = original signal
True
>>>
>>> N = len(fourier)
>>> signal = empty(N,complex)
>>> for k in range(N):                                               # equivalent but much slower
...    signal[k] = sum(fourier * exp(+1j*2*pi*k*arange(N)/N)) / N

See also: fft, fftfreq, fftshift

imag() or .imag

numpy.imag(val)

Return the imaginary part of array.

Parameters
----------
val : array_like
    Input array.

Returns
-------
out : ndarray, real or int
    Real part of each element, same shape as `val`.

ndarray.imag

The imaginary part of the array.

Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([ 0.        ,  0.70710678])
>>> x.imag.dtype
dtype('float64')

>>> from numpy import *
>>> a = array([1+2j,3+4j,5+6j])
>>> a.imag
array([ 2.,  4.,  6.])
>>> a.imag = 9
>>> a
array([ 1.+9.j,  3.+9.j,  5.+9.j])
>>> a.imag = array([9,8,7])
>>> a
array([ 1.+9.j,  3.+8.j,  5.+7.j])

See also: real, angle

index_exp

numpy.index_exp

A nicer way to build up index tuples for arrays.

For any index combination, including slicing and axis insertion,
'a[indices]' is the same as 'a[index_exp[indices]]' for any
array 'a'. However, 'index_exp[indices]' can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.

>>> from numpy import *
>>> myslice = index_exp[2:4,...,4,::-1]                             # myslice could now be passed to a function, for example.
>>> print myslice
(slice(2, 4, None), Ellipsis, 4, slice(None, None, -1))

See also: slice, s_

indices()

numpy.indices(dimensions, dtype=<type 'int'>)

Return an array representing the indices of a grid.

Compute an array where the subarrays contain index values 0,1,...
varying only along the corresponding axis.

Parameters
----------
dimensions : sequence of ints
    The shape of the grid.
dtype : optional
    Data_type of the result.

Returns
-------
grid : ndarray
    The array of grid indices,
    ``grid.shape = (len(dimensions),) + tuple(dimensions)``.

See Also
--------
mgrid, meshgrid

Notes
-----
The output shape is obtained by prepending the number of dimensions
in front of the tuple of dimensions, i.e. if `dimensions` is a tuple
``(r0, ..., rN-1)`` of length ``N``, the output shape is
``(N,r0,...,rN-1)``.

The subarrays ``grid[k]`` contains the N-D array of indices along the
``k-th`` axis. Explicitly::

    grid[k,i0,i1,...,iN-1] = ik

Examples
--------
>>> grid = np.indices((2,3))
>>> grid.shape
(2,2,3)
>>> grid[0]        # row indices
array([[0, 0, 0],
       [1, 1, 1]])
>>> grid[1]        # column indices
array([[0, 1, 2],
       [0, 1, 2]])

>>> from numpy import *
>>> indices((2,3))
array([[[0, 0, 0],
[1, 1, 1]],
[[0, 1, 2],
[0, 1, 2]]])
>>> a = array([ [ 0, 1, 2, 3, 4],
...              [10,11,12,13,14],
...              [20,21,22,23,24],
...              [30,31,32,33,34] ])
>>> i,j = indices((2,3))
>>> a[i,j]
array([[ 0,  1,  2],
[10, 11, 12]])

See also: mgrid, [], ix_, slice

inf

numpy.inf

float(x) -> floating point number

Convert a string or number to a floating point number, if possible.

>>> from numpy import *
>>> exp(array([1000.]))                                               # inf = infinite = number too large to represent, machine dependent
array([              inf])
>>> x = array([2,-inf,1,inf])
>>> isfinite(x)                                                       # show which elements are not nan/inf/-inf
array([True, False, True, False], dtype=bool)
>>> isinf(x)                                                          # show which elements are inf/-inf
array([False, True, False, True], dtype=bool)
>>> isposinf(x)                                                       # show which elements are inf
array([False, False, False, True], dtype=bool)
>>> isneginf(x)                                                       # show which elements are -inf
array([False, True, False, False], dtype=bool)
>>> nan_to_num(x)                                                     # replace -inf/inf with most negative/positive representable number
array([  2.00000000e+000,  -1.79769313e+308,   1.00000000e+000,
1.79769313e+308])

See also: nan, finfo

info() or .info

numpy.info(object=None, maxwidth=76, output=<open file '<stdout>', mode 'w' at 0x00AFF068>, toplevel='numpy')

Get help information for a function, class, or module.

Parameters
----------
object : optional
    Input object to get information about.
maxwidth : int, optional
    Printing width.
output : file like object open for writing, optional
    Write into file like object.
toplevel : string, optional
    Start search at this level.

Examples
--------
>>> np.info(np.polyval) # doctest: +SKIP

   polyval(p, x)

     Evaluate the polymnomial p at x.

     ...

inner()

numpy.inner(...)

innerproduct(a,b)
Returns the inner product of a and b for arrays of floating point types.
Like the generic NumPy equivalent the product sum is over
the last dimension of a and b.
NB: The first argument is not conjugated.

>>> from numpy import *
>>> x = array([1,2,3])
>>> y = array([10,20,30])
>>> inner(x,y)                      # 1x10+2x20+3x30 = 140
140

See also: cross, outer, dot

insert()

numpy.insert(arr, obj, values, axis=None)

Insert values along the given axis before the given indices.

Parameters
----------
arr : array_like
    Input array.
obj : {integer, slice, integer array_like}
    Insert `values` before `obj` indices.
values :
    Values to insert into `arr`.
axis : int, optional
    Axis along which to insert `values`.  If `axis` is None then ravel
    `arr` first.

Examples
--------
>>> a = np.array([[1,2,3],
...               [4,5,6],
...               [7,8,9]])
>>> np.insert(a, [1,2], [[4],[5]], axis=0)
array([[1, 2, 3],
       [4, 4, 4],
       [4, 5, 6],
       [5, 5, 5],
       [7, 8, 9]])

>>> from numpy import *
>>> a = array([10,20,30,40])
>>> insert(a,[1,3],50)                               # insert value 50 before elements [1] and [3]
array([10, 50, 20, 30, 50, 40])
>>> insert(a,[1,3],[50,60])                          # insert value 50 before element [1] and value 60 before element [3]
array([10, 50, 20, 30, 60, 40])
>>> a = array([[10,20,30],[40,50,60],[70,80,90]])
>>> insert(a, [1,2], 100, axis=0)                    # insert row with values 100 before row[1] and before row[2]
array([[ 10,  20,  30],
[100, 100, 100],
[ 40,  50,  60],
[100, 100, 100],
[ 70,  80,  90]])
>>> insert(a, [0,1], [[100],[200]], axis=0)
array([[100, 100, 100],
[ 10,  20,  30],
[200, 200, 200],
[ 40,  50,  60],
[ 70,  80,  90]])
>>> insert(a, [0,1], [100,200], axis=1)
array([[100,  10, 200,  20,  30],
[100,  40, 200,  50,  60],
[100,  70, 200,  80,  90]])

See also: delete, append

int_asbuffer()

numpy.int_asbuffer(...)

interp()

numpy.interp(x, xp, fp, left=None, right=None)

One-dimensional linear interpolation.

Returns the one-dimensional piecewise linear interpolant to a function
with given values at discrete data-points.

Parameters
----------
x : array_like
    The x-coordinates of the interpolated values.

xp : 1-D sequence of floats
    The x-coordinates of the data points, must be increasing.

fp : 1-D sequence of floats
    The y-coordinates of the data points, same length as `xp`.

left : float, optional
    Value to return for `x < xp[0]`, default is `fp[0]`.

right : float, optional
    Value to return for `x > xp[-1]`, defaults is `fp[-1]`.

Returns
-------
y : {float, ndarray}
    The interpolated values, same shape as `x`.

Raises
------
ValueError
    If `xp` and `fp` have different length

Notes
-----
Does not check that the x-coordinate sequence `xp` is increasing.
If `xp` is not increasing, the results are nonsense.
A simple check for increasingness is::

    np.all(np.diff(xp) > 0)


Examples
--------
>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([ 3. ,  3. ,  2.5,  0.56,  0. ])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0

Plot an interpolant to the sine function:

>>> x = np.linspace(0, 2*np.pi, 10)
>>> y = np.sin(x)
>>> xvals = np.linspace(0, 2*np.pi, 50)
>>> yinterp = np.interp(xvals, x, y)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(xvals, yinterp, '-x')
>>> plt.show()

intersect1d()

numpy.intersect1d(ar1, ar2)

Intersection returning repeated or unique elements common to both arrays.

Parameters
----------
ar1,ar2 : array_like
    Input arrays.

Returns
-------
out : ndarray, shape(N,)
    Sorted 1D array of common elements with repeating elements.

See Also
--------
intersect1d_nu : Returns only unique common elements.
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

Examples
--------
>>> np.intersect1d([1,3,3],[3,1,1])
array([1, 1, 3, 3])

intersect1d_nu()

numpy.intersect1d_nu(ar1, ar2)

Intersection returning unique elements common to both arrays.

Parameters
----------
ar1,ar2 : array_like
    Input arrays.

Returns
-------
out : ndarray, shape(N,)
    Sorted 1D array of common and unique elements.

See Also
--------
intersect1d : Returns repeated or unique common elements.
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

Examples
--------
>>> np.intersect1d_nu([1,3,3],[3,1,1])
array([1, 3])

inv()

numpy.linalg.inv(a)

Compute the inverse of a matrix.

Parameters
----------
a : array_like, shape (M, M)
    Matrix to be inverted

Returns
-------
ainv : ndarray, shape (M, M)
    Inverse of the matrix `a`

Raises
------
LinAlgError
    If `a` is singular or not square.

Examples
--------
>>> a = np.array([[1., 2.], [3., 4.]])
>>> np.linalg.inv(a)
array([[-2. ,  1. ],
       [ 1.5, -0.5]])
>>> np.dot(a, np.linalg.inv(a))
array([[ 1.,  0.],
       [ 0.,  1.]])

>>> from numpy import *
>>> from numpy.linalg import inv
>>> a = array([[3,1,5],[1,0,8],[2,1,4]])
>>> print a
[[3 1 5]
[1 0 8]
[2 1 4]]
>>> inva = inv(a)                                                          # Inverse matrix
>>> print inva
[[ 1.14285714 -0.14285714 -1.14285714]
[-1.71428571 -0.28571429  2.71428571]
[-0.14285714  0.14285714  0.14285714]]
>>> dot(a,inva)                                                            # Check the result, should be eye(3) within machine precision
array([[  1.00000000e-00,   2.77555756e-17,   3.60822483e-16],
[  0.00000000e+00,   1.00000000e+00,   0.00000000e+00],
[ -1.11022302e-16,   0.00000000e+00,   1.00000000e+00]])

See also: solve, pinv

invert()

numpy.invert(...)

y = invert(x)

Compute bit-wise inversion, or bit-wise NOT, element-wise.

When calculating the bit-wise NOT of an element ``x``, each element is
first converted to its binary representation (which works
just like the decimal system, only now we're using 2 instead of 10):

.. math:: x = \sum_{i=0}^{W-1} a_i \cdot 2^i

where ``W`` is the bit-width of the type (i.e., 8 for a byte or uint8),
and each :math:`a_i` is either 0 or 1.  For example, 13 is represented
as ``00001101``, which translates to :math:`2^4 + 2^3 + 2`.

The bit-wise operator is the result of

.. math:: z = \sum_{i=0}^{i=W-1} (\lnot a_i) \cdot 2^i,

where :math:`\lnot` is the NOT operator, which yields 1 whenever
:math:`a_i` is 0 and yields 0 whenever :math:`a_i` is 1.

For signed integer inputs, the two's complement is returned.
In a two's-complement system negative numbers are represented by the two's
complement of the absolute value. This is the most common method of
representing signed integers on computers [1]_. A N-bit two's-complement
system can represent every integer in the range
:math:`-2^{N-1}` to :math:`+2^{N-1}-1`.

Parameters
----------
x1 : ndarray
    Only integer types are handled (including booleans).

Returns
-------
out : ndarray
    Result.

See Also
--------
bitwise_and, bitwise_or, bitwise_xor
logical_not
binary_repr :
    Return the binary representation of the input number as a string.

Notes
-----
`bitwise_not` is an alias for `invert`:

>>> np.bitwise_not is np.invert
True

References
----------
.. [1] Wikipedia, "Two's complement",
    http://en.wikipedia.org/wiki/Two's_complement

Examples
--------
We've seen that 13 is represented by ``00001101``.
The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8))
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8)
'00001101'
>>> np.binary_repr(242, width=8)
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16))
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16)
'0000000000001101'
>>> np.binary_repr(65522, width=16)
'1111111111110010'

When using signed integer types the result is the two's complement of
the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8))
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8)
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False]))
array([False,  True], dtype=bool)

ipmt()

numpy.ipmt(rate, per, nper, pv, fv=0.0, when='end')

Not implemented. Compute the payment portion for loan interest.

Parameters
----------
rate : scalar or array_like of shape(M, )
    Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
    Interest paid against the loan changes during the life or the loan.
    The `per` is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
    Number of compounding periods
pv : scalar or array_like of shape(M, )
    Present value
fv : scalar or array_like of shape(M, ), optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0)).
    Defaults to {'end', 0}.

Returns
-------
out : ndarray
    Interest portion of payment.  If all input is scalar, returns a scalar
    float.  If any input is array_like, returns interest payment for each
    input element. If multiple inputs are array_like, they all must have
    the same shape.

See Also
--------
ppmt, pmt, pv

Notes
-----
The total payment is made up of payment against principal plus interest.

``pmt = ppmt + ipmt``

irr()

numpy.irr(values)

Return the Internal Rate of Return (IRR).

This is the rate of return that gives a net present value of 0.0.

Parameters
----------
values : array_like, shape(N,)
    Input cash flows per time period.  At least the first value would be
    negative to represent the investment in the project.

Returns
-------
out : float
    Internal Rate of Return for periodic input values.

Examples
--------
>>> np.irr([-100, 39, 59, 55, 20])
0.2809484211599611

iscomplex()

numpy.iscomplex(x)

Return a bool array, True if element is complex (non-zero imaginary part).

For scalars, return a boolean.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray, bool
    Output array.

Examples
--------
>>> x = np.array([1,2,3.j])
>>> np.iscomplex(x)
array([False, False,  True], dtype=bool)

>>> import numpy as np
>>> a = np.array([1,2,3.j])
>>> np.iscomplex(a)
array([False, False,  True], dtype=bool)

iscomplexobj()

numpy.iscomplexobj(x)

Return True if x is a complex type or an array of complex numbers.

Unlike iscomplex(x), complex(3.0) is considered a complex object.

>>> import numpy as np
>>> a = np.array([1,2,3.j])
>>> np.iscomplexobj(a)
True
>>> a = np.array([1,2,3])
>>> np.iscomplexobj(a)
False
>>> a = np.array([1,2,3], dtype=np.complex)
>>> np.iscomplexobj(a)
True

isfinite()

numpy.isfinite(...)

y = isfinite(x)

Returns True for each element that is a finite number.

Shows which elements of the input are finite (not infinity or not
Not a Number).

Parameters
----------
x : array_like
  Input values.
y : array_like, optional
  A boolean array with the same shape and type as `x` to store the result.

Returns
-------
y : ndarray, bool
  For scalar input data, the result is a new numpy boolean with value True
  if the input data is finite; otherwise the value is False (input is
  either positive infinity, negative infinity or Not a Number).

  For array input data, the result is an numpy boolean array with the same
  dimensions as the input and the values are True if the corresponding
  element of the input is finite; otherwise the values are False (element
  is either positive infinity, negative infinity or Not a Number). If the
  second argument is supplied then an numpy integer array is returned with
  values 0 or 1 corresponding to False and True, respectively.

See Also
--------
isinf : Shows which elements are negative or negative infinity.
isneginf : Shows which elements are negative infinity.
isposinf : Shows which elements are positive infinity.
isnan : Shows which elements are Not a Number (NaN).


Notes
-----
Not a Number, positive infinity and negative infinity are considered
to be non-finite.

Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.

Errors result if second argument is also supplied with scalar input or
if first and second arguments have different shapes.

Examples
--------
>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False,  True, False], dtype=bool)
>>> x=np.array([-np.inf, 0., np.inf])
>>> y=np.array([2,2,2])
>>> np.isfinite(x,y)
array([0, 1, 0])
>>> y
array([0, 1, 0])

isfortran()

numpy.isfortran(a)

Returns True if array is arranged in Fortran-order and dimension > 1.

Parameters
----------
a : ndarray
    Input array to test.

isinf()

numpy.isinf(...)

y = isinf(x)

Shows which elements of the input are positive or negative infinity.
Returns a numpy boolean scalar or array resulting from an element-wise test
for positive or negative infinity.

Parameters
----------
x : array_like
  input values
y : array_like, optional
  An array with the same shape as `x` to store the result.

Returns
-------
y : {ndarray, bool}
  For scalar input data, the result is a new numpy boolean with value True
  if the input data is positive or negative infinity; otherwise the value
  is False.

  For array input data, the result is an numpy boolean array with the same
  dimensions as the input and the values are True if the corresponding
  element of the input is positive or negative infinity; otherwise the
  values are False.  If the second argument is supplied then an numpy
  integer array is returned with values 0 or 1 corresponding to False and
  True, respectively.

See Also
--------
isneginf : Shows which elements are negative infinity.
isposinf : Shows which elements are positive infinity.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a number, positive and
         negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.

Errors result if second argument is also supplied with scalar input or
if first and second arguments have different shapes.

Numpy's definitions for positive infinity (PINF) and negative infinity
(NINF) may be change in the future versions.

Examples
--------
>>> np.isinf(np.inf)
True
>>> np.isinf(np.nan)
False
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
array([ True,  True, False, False], dtype=bool)
>>> x=np.array([-np.inf, 0., np.inf])
>>> y=np.array([2,2,2])
>>> np.isinf(x,y)
array([1, 0, 1])
>>> y
array([1, 0, 1])

isnan()

numpy.isnan(...)

y = isnan(x)

Returns a numpy boolean scalar or array resulting from an element-wise test
for Not a Number (NaN).

Parameters
----------
x : array_like
  input data.

Returns
-------
y : {ndarray, bool}
  For scalar input data, the result is a new numpy boolean with value True
  if the input data is NaN; otherwise the value is False.

  For array input data, the result is an numpy boolean array with the same
  dimensions as the input and the values are True if the corresponding
  element of the input is Not a Number; otherwise the values are False.

See Also
--------
isinf : Tests for infinity.
isneginf : Tests for negative infinity.
isposinf : Tests for positive infinity.
isfinite : Shows which elements are not: Not a number, positive infinity
           and negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.

Examples
--------
>>> np.isnan(np.nan)
True
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
array([ True, False, False], dtype=bool)

isneginf()

numpy.isneginf(x, y=None)

Return True where x is -infinity, and False otherwise.

Parameters
----------
x : array_like
  The input array.
y : array_like
  A boolean array with the same shape as `x` to store the result.

Returns
-------
y : ndarray
  A boolean array where y[i] = True only if x[i] = -Inf.

See Also
--------
isposinf, isfinite

Examples
--------
>>> np.isneginf([-np.inf, 0., np.inf])
array([ True, False, False], dtype=bool)

isposinf()

numpy.isposinf(x, y=None)

Shows which elements of the input are positive infinity.

Returns a numpy array resulting from an element-wise test for positive
infinity.

Parameters
----------
x : array_like
  The input array.
y : array_like
  A boolean array with the same shape as `x` to store the result.

Returns
-------
y : ndarray
  A numpy boolean array with the same dimensions as the input.
  If second argument is not supplied then a numpy boolean array is returned
  with values True where the corresponding element of the input is positive
  infinity and values False where the element of the input is not positive
  infinity.

  If second argument is supplied then an numpy integer array is returned
  with values 1 where the corresponding element of the input is positive
  positive infinity.

See Also
--------
isinf : Shows which elements are negative or positive infinity.
isneginf : Shows which elements are negative infinity.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a number, positive and
         negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Also that positive infinity is not equivalent to negative infinity. But
infinity is equivalent to positive infinity.

Errors result if second argument is also supplied with scalar input or
if first and second arguments have different shapes.

Numpy's definitions for positive infinity (PINF) and negative infinity
(NINF) may be change in the future versions.


Examples
--------
>>> np.isposinf(np.PINF)
array(True, dtype=bool)
>>> np.isposinf(np.inf)
array(True, dtype=bool)
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
array([False, False,  True], dtype=bool)
>>> x=np.array([-np.inf, 0., np.inf])
>>> y=np.array([2,2,2])
>>> np.isposinf(x,y)
array([1, 0, 0])
>>> y
array([1, 0, 0])

isreal()

numpy.isreal(x)

Returns a bool array where True if the corresponding input element is real.

True if complex part is zero.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray, bool
    Boolean array of same shape as `x`.

Examples
--------
>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
>>> array([False,  True,  True,  True,  True, False], dtype=bool)

isrealobj()

numpy.isrealobj(x)

Return True if x is not a complex type.

Unlike isreal(x), complex(3.0) is considered a complex object.

isscalar()

numpy.isscalar(num)

Returns True if the type of num is a scalar type.

Parameters
----------
num : any
    Input argument.

Returns
-------
val : bool
    True if `num` is a scalar type, False if it is not.

Examples
--------
>>> np.isscalar(3.1)
True
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True

issctype()

numpy.issctype(rep)

Determines whether the given object represents
a numeric array type.

issubclass_()

numpy.issubclass_(arg1, arg2)

issubdtype()

numpy.issubdtype(arg1, arg2)

Returns True if first argument is a typecode lower/equal in type hierarchy.

Parameters
----------
arg1 : dtype_like
    dtype or string representing a typecode.
arg2 : dtype_like
    dtype or string representing a typecode.


See Also
--------
numpy.core.numerictypes : Overview of numpy type hierarchy.

Examples
--------
>>> np.issubdtype('S1', str)
True
>>> np.issubdtype(np.float64, np.float32)
False

issubsctype()

numpy.issubsctype(arg1, arg2)

item()

ndarray.item(...)

a.item()

Copy the first element of array to a standard Python scalar and return
it. The array must be of size one.

>>> from numpy import *
>>> a = array([5])
>>> type(a[0])
<type 'numpy.int32'>
>>> a.item()               # Conversion of array of size 1 to Python scalar
5
>>> type(a.item())
<type 'int'>
>>> b = array([2,3,4])
>>> b[1].item()            # Conversion of 2nd element to Python scalar
3
>>> type(b[1].item())
<type 'int'>
>>> b.item(2)              # Return 3rd element converted to Python scalar
4
>>> type(b.item(2))
<type 'int'>
>>> type(b[2])             # b[2] is slower than b.item(2), and there is no conversion
<type 'numpy.int32'>

See also: []

itemset()

ndarray.itemset(...)

iterable()

numpy.iterable(y)

ix_()

numpy.ix_(*args)

Construct an open mesh from multiple sequences.

This function takes n 1-d sequences and returns n outputs with n
dimensions each such that the shape is 1 in all but one dimension and
the dimension with the non-unit shape value cycles through all n
dimensions.

Using ix_() one can quickly construct index arrays that will index
the cross product.

a[ix_([1,3,7],[2,5,8])]  returns the array

a[1,2]  a[1,5]  a[1,8]
a[3,2]  a[3,5]  a[3,8]
a[7,2]  a[7,5]  a[7,8]

>>> from numpy import *
>>> a = arange(9).reshape(3,3)
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> indices = ix_([0,1,2],[1,2,0])           # trick to be used with array broadcasting
>>> print indices
(array([[0],
[1],
[2]]), array([[1, 2, 0]]))
>>> print a[indices]
[[1 2 0]
[4 5 3]
[7 8 6]]
>>> # The latter array is the cross-product:
>>> # [[ a[0,1] a[0,2] a[0,0]]
... #  [ a[1,1] a[1,2] a[1,0]]
... #  [ a[2,1] a[2,2] a[2,0]]]
...

See also: [], indices, cross, outer

kaiser()

numpy.kaiser(M, beta)

Return the Kaiser window.

The Kaiser window is a taper formed by using a Bessel function.

Parameters
----------
M : int
    Number of points in the output window. If zero or less, an
    empty array is returned.
beta : float
    Shape parameter for window.

Returns
-------
out : array
    The window, normalized to one (the value one
    appears only if the number of samples is odd).

See Also
--------
bartlett, blackman, hamming, hanning

Notes
-----
The Kaiser window is defined as

.. math::  w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
           \right)/I_0(\beta)

with

.. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},

where :math:`I_0` is the modified zeroth-order Bessel function.

The Kaiser was named for Jim Kaiser, who discovered a simple approximation
to the DPSS window based on Bessel functions.
The Kaiser window is a very good approximation to the Digital Prolate
Spheroidal Sequence, or Slepian window, which is the transform which
maximizes the energy in the main lobe of the window relative to total
energy.

The Kaiser can approximate many other windows by varying the beta
parameter.

====  =======================
beta  Window shape
====  =======================
0     Rectangular
5     Similar to a Hamming
6     Similar to a Hanning
8.6   Similar to a Blackman
====  =======================

A beta value of 14 is probably a good starting point. Note that as beta
gets large, the window narrows, and so the number of samples needs to be
large enough to sample the increasingly narrow spike, otherwise nans will
get returned.


Most references to the Kaiser window come from the signal processing
literature, where it is used as one of many windowing functions for
smoothing values.  It is also known as an apodization (which means
"removing the foot", i.e. smoothing discontinuities at the beginning
and end of the sampled signal) or tapering function.

References
----------
.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
       digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
       John Wiley and Sons, New York, (1966).
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
       University of Alberta Press, 1975, pp. 177-178.
.. [3] Wikipedia, "Window function",
       http://en.wikipedia.org/wiki/Window_function

Examples
--------
>>> from numpy import kaiser
>>> kaiser(12, 14)
array([  7.72686684e-06,   3.46009194e-03,   4.65200189e-02,
         2.29737120e-01,   5.99885316e-01,   9.45674898e-01,
         9.45674898e-01,   5.99885316e-01,   2.29737120e-01,
         4.65200189e-02,   3.46009194e-03,   7.72686684e-06])


Plot the window and the frequency response:

>>> from numpy import clip, log10, array, kaiser
>>> from scipy.fftpack import fft, fftshift
>>> import matplotlib.pyplot as plt

>>> window = kaiser(51, 14)
>>> plt.plot(window)
>>> plt.title("Kaiser window")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("Sample")
>>> plt.show()

>>> A = fft(window, 2048) / 25.5
>>> mag = abs(fftshift(A))
>>> freq = linspace(-0.5,0.5,len(A))
>>> response = 20*log10(mag)
>>> response = clip(response,-100,100)
>>> plt.plot(freq, response)
>>> plt.title("Frequency response of Kaiser window")
>>> plt.ylabel("Magnitude [dB]")
>>> plt.xlabel("Normalized frequency [cycles per sample]")
>>> plt.axis('tight'); plt.show()

kron()

numpy.kron(a, b)

Kronecker product of two arrays.

Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.

Parameters
----------
a, b : array_like

Returns
-------
out : ndarray

See Also
--------

outer : The outer product

Notes
-----

The function assumes that the number of dimenensions of `a` and `b`
are the same, if necessary prepending the smallest with ones.
If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
The elements are products of elements from `a` and `b`, organized
explicitly by::

    kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]

where::

    kt = it * st + jt,  t = 0,...,N

In the common 2-D case (N=1), the block structure can be visualized::

    [[ a[0,0]*b,   a[0,1]*b,  ... , a[0,-1]*b  ],
     [  ...                              ...   ],
     [ a[-1,0]*b,  a[-1,1]*b, ... , a[-1,-1]*b ]]


Examples
--------
>>> np.kron([1,10,100], [5,6,7])
array([  5,   6,   7,  50,  60,  70, 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([  5,  50, 500,   6,  60, 600,   7,  70, 700])

>>> np.kron(np.eye(2), np.ones((2,2)))
array([[ 1.,  1.,  0.,  0.],
       [ 1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.],
       [ 0.,  0.,  1.,  1.]])

>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J             # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> C[K] == A[I]*B[J]
True

ldexp()

numpy.ldexp(...)

y = ldexp(x1,x2)

Compute y = x1 * 2**x2.

left_shift()

numpy.left_shift(...)

y = left_shift(x1,x2)

Shift the bits of an integer to the left.

Bits are shifted to the left by appending `x2` 0s at the right of `x1`.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying `x1` by ``2**x2``.

Parameters
----------
x1 : array_like of integer type
    Input values.
x2 : array_like of integer type
    Number of zeros to append to `x1`.

Returns
-------
out : array of integer type
    Return `x1` with bits shifted `x2` times to the left.

See Also
--------
right_shift : Shift the bits of an integer to the right.
binary_repr : Return the binary representation of the input number
    as a string.

Examples
--------
>>> np.left_shift(5, [1,2,3])
array([10, 20, 40])

less()

numpy.less(...)

y = less(x1,x2)

Returns (x1 < x2) element-wise.

Parameters
----------
x1, x2 : array_like
    Input arrays.

Returns
-------
Out : {ndarray, bool}
    Output array of bools, or a single bool if `x1` and `x2` are scalars.

See Also
--------
less_equal

Examples
--------
>>> np.less([1,2],[2,2])
array([ True, False], dtype=bool)

less_equal()

numpy.less_equal(...)

y = less_equal(x1,x2)

Returns (x1 <= x2) element-wise.

Parameters
----------
x1, x2 : array_like
    Input arrays.

Returns
-------
Out : {ndarray, bool}
    Output array of bools, or a single bool if `x1` and `x2` are scalars.

See Also
--------
less

Examples
--------
>>> np.less_equal([1,2,3],[2,2,2])
array([ True,  True, False], dtype=bool)

lexsort()

numpy.lexsort(...)

lexsort(keys, axis=-1)

Perform an indirect sort using a list of keys.

Imagine three input keys, ``a``, ``b`` and ``c``.  These can be seen as
columns in a spreadsheet.  The first row of the spreadsheet would
therefore be ``a[0], b[0], c[0]``.  Lexical sorting orders the different
rows by first sorting on the on first column (key), then the second,
and so forth.  At each step, the previous ordering is preserved
when equal keys are encountered.

Parameters
----------
keys : (k,N) array or tuple containing k (N,)-shaped sequences
    The `k` different "columns" to be sorted.  The last column is the
    primary sort column.
axis : int, optional
    Axis to be indirectly sorted.  By default, sort over the last axis.

Returns
-------
indices : (N,) ndarray of ints
    Array of indices that sort the keys along the specified axis.

See Also
--------
argsort : Indirect sort.
ndarray.sort : In-place sort.
sort : Return a sorted copy of an array.

Examples
--------
Sort names: first by surname, then by name.

>>> surnames =    ('Hertz',    'Galilei', 'Hertz')
>>> first_names = ('Heinrich', 'Galileo', 'Gustav')
>>> ind = np.lexsort((first_names, surnames))
>>> ind
array([1, 2, 0])

>>> [surnames[i] + ", " + first_names[i] for i in ind]
['Galilei, Galileo', 'Hertz, Gustav', 'Hertz, Heinrich']

Sort two columns of numbers:

>>> a = [1,5,1,4,3,4,4] # First column
>>> b = [9,4,0,4,0,2,1] # Second column
>>> ind = np.lexsort((b,a)) # Sort by second, then first column
>>> print ind
[2 0 4 6 5 3 1]

>>> [(a[i],b[i]) for i in ind]
[(1, 0), (1, 9), (3, 0), (4, 1), (4, 2), (4, 4), (5, 4)]

Note that the first elements are sorted.  For each first element,
the second elements are also sorted.

A normal ``argsort`` would have yielded:

>>> [(a[i],b[i]) for i in np.argsort(a)]
[(1, 9), (1, 0), (3, 0), (4, 4), (4, 2), (4, 1), (5, 4)]

Structured arrays are sorted lexically:

>>> x = np.array([(1,9), (5,4), (1,0), (4,4), (3,0), (4,2), (4,1)],
...              dtype=np.dtype([('x', int), ('y', int)]))

>>> np.argsort(x) # or np.argsort(x, order=('x', 'y'))
array([2, 0, 4, 6, 5, 3, 1])

>>> from numpy import *
>>> serialnr = array([1023, 5202, 6230, 1671, 1682, 5241])
>>> height = array([40., 42., 60., 60., 98., 40.])
>>> width = array([50., 20., 70., 60.,  15., 30.])
>>>
>>> # We want to sort the serial numbers with increasing height, _AND_
>>> # serial numbers with equal heights should be sorted with increasing width.
>>>
>>> indices = lexsort(keys = (width, height))        # mind the order!
>>> indices
array([5, 0, 1, 3, 2, 4])
>>> for n in indices:
...   print serialnr[n], height[n], width[n]
...
5241 40.0 30.0
1023 40.0 50.0
5202 42.0 20.0
1671 60.0 60.0
6230 60.0 70.0
1682 98.0 15.0
>>>
>>> a = vstack([serialnr,width,height])                              # Alternatively: all data in one big matrix
>>> print a                                                          # Mind the order of the rows!
[[ 1023.  5202.  6230.  1671.  1682.  5241.]
[   50.    20.    70.    60.    15.    30.]
[   40.    42.    60.    60.    98.    40.]]
>>> indices = lexsort(a)                                             # Sort on last row, then on 2nd last row, etc.
>>> a.take(indices, axis=-1)
array([[ 5241.,  1023.,  5202.,  1671.,  6230.,  1682.],
[   30.,    50.,    20.,    60.,    70.,    15.],
[   40.,    40.,    42.,    60.,    60.,    98.]])

See also: sort, argsort

linspace()

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False)

Return evenly spaced numbers over a specified interval.

Returns `num` evenly spaced samples, calculated over the
interval [`start`, `stop` ].

The endpoint of the interval can optionally be excluded.

Parameters
----------
start : {float, int}
    The starting value of the sequence.
stop : {float, int}
    The end value of the sequence, unless `endpoint` is set to False.
    In that case, the sequence consists of all but the last of ``num + 1``
    evenly spaced samples, so that `stop` is excluded.  Note that the step
    size changes when `endpoint` is False.
num : int, optional
    Number of samples to generate. Default is 50.
endpoint : bool, optional
    If True, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
retstep : bool, optional
    If True, return (`samples`, `step`), where `step` is the spacing
    between samples.

Returns
-------
samples : ndarray
    There are `num` equally spaced samples in the closed interval
    ``[start, stop]`` or the half-open interval ``[start, stop)``
    (depending on whether `endpoint` is True or False).
step : float (only if `retstep` is True)
    Size of spacing between samples.


See Also
--------
arange : Similiar to `linspace`, but uses a step size (instead of the
         number of samples).
logspace : Samples uniformly distributed in log space.

Examples
--------
>>> np.linspace(2.0, 3.0, num=5)
    array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
    array([ 2. ,  2.2,  2.4,  2.6,  2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
    (array([ 2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
>>> plt.plot(x2, y + 0.5, 'o')
>>> plt.ylim([-0.5, 1])
>>> plt.show()

>>> from numpy import *
>>> linspace(0,5,num=6)                                                      # 6 evenly spaced numbers between 0 and 5 incl.
array([ 0.,  1.,  2.,  3.,  4.,  5.])
>>> linspace(0,5,num=10)                                                     # 10 evenly spaced numbers between 0 and 5 incl.
array([ 0.        ,  0.55555556,  1.11111111,  1.66666667,  2.22222222,
2.77777778,  3.33333333,  3.88888889,  4.44444444,  5.        ])
>>> linspace(0,5,num=10,endpoint=False)                                     # 10 evenly spaced numbers between 0 and 5 EXCL.
array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ,  4.5])
>>> stepsize = linspace(0,5,num=10,endpoint=False,retstep=True)             # besides the usual array, also return the step size
>>> stepsize
(array([ 0. ,  0.5,  1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ,  4.5]), 0.5)
>>> myarray, stepsize = linspace(0,5,num=10,endpoint=False,retstep=True)
>>> stepsize
0.5

See also: arange, logspace, r_

load()

numpy.load(file, memmap=False)

Load a pickled, ``.npy``, or ``.npz`` binary file.

Parameters
----------
file : file-like object or string
    The file to read.  It must support ``seek()`` and ``read()`` methods.
memmap : bool
    If True, then memory-map the ``.npy`` file (or unzip the ``.npz`` file
    into a temporary directory and memory-map each component).  This has
    no effect for a pickled file.

Returns
-------
result : array, tuple, dict, etc.
    Data stored in the file.

Raises
------
IOError
    If the input file does not exist or cannot be read.

Notes
-----
- If file contains pickle data, then whatever is stored in the
  pickle is returned.
- If the file is a ``.npy`` file, then an array is returned.
- If the file is a ``.npz`` file, then a dictionary-like object is
  returned, containing {filename: array} key-value pairs, one for
  every file in the archive.

Examples
--------
>>> np.save('/tmp/123', np.array([1, 2, 3])
>>> np.load('/tmp/123.npy')
array([1, 2, 3])

loads()

numpy.loads(...)

loads(string) -- Load a pickle from the given string

loadtxt()

numpy.loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False)

Load data from a text file.

Each row in the text file must have the same number of values.

Parameters
----------
fname : file or string
    File or filename to read.  If the filename extension is ``.gz``,
    the file is first decompressed.
dtype : data-type
    Data type of the resulting array.  If this is a record data-type,
    the resulting array will be 1-dimensional, and each row will be
    interpreted as an element of the array.   In this case, the number
    of columns used must match the number of fields in the data-type.
comments : string, optional
    The character used to indicate the start of a comment.
delimiter : string, optional
    The string used to separate values.  By default, this is any
    whitespace.
converters : {}
    A dictionary mapping column number to a function that will convert
    that column to a float.  E.g., if column 0 is a date string:
    ``converters = {0: datestr2num}``. Converters can also be used to
    provide a default value for missing data:
    ``converters = {3: lambda s: float(s or 0)}``.
skiprows : int
    Skip the first `skiprows` lines.
usecols : sequence
    Which columns to read, with 0 being the first.  For example,
    ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns.
unpack : bool
    If True, the returned array is transposed, so that arguments may be
    unpacked using ``x, y, z = loadtxt(...)``

Returns
-------
out : ndarray
    Data read from the text file.

See Also
--------
scipy.io.loadmat : reads Matlab(R) data files

Examples
--------
>>> from StringIO import StringIO   # StringIO behaves like a file object
>>> c = StringIO("0 1\n2 3")
>>> np.loadtxt(c)
array([[ 0.,  1.],
       [ 2.,  3.]])

>>> d = StringIO("M 21 72\nF 35 58")
>>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'),
...                      'formats': ('S1', 'i4', 'f4')})
array([('M', 21, 72.0), ('F', 35, 58.0)],
      dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')])

>>> c = StringIO("1,0,2\n3,0,4")
>>> x,y = np.loadtxt(c, delimiter=',', usecols=(0,2), unpack=True)
>>> x
array([ 1.,  3.])
>>> y
array([ 2.,  4.])

>>> from numpy import *
>>>
>>> data = loadtxt("myfile.txt")                       # myfile.txt contains 4 columns of numbers
>>> t,z = data[:,0], data[:,3]                         # data is 2D numpy array
>>>
>>> t,x,y,z = loadtxt("myfile.txt", unpack=True)                  # to unpack all columns
>>> t,z = loadtxt("myfile.txt", usecols = (0,3), unpack=True)     # to select just a few columns
>>> data = loadtxt("myfile.txt", skiprows = 7)                    # to skip 7 rows from top of file
>>> data = loadtxt("myfile.txt", comments = '!')                  # use '!' as comment char instead of '#'
>>> data = loadtxt("myfile.txt", delimiter=';')                   # use ';' as column separator instead of whitespace
>>> data = loadtxt("myfile.txt", dtype = int)                     # file contains integers instead of floats

See also: savetxt, fromfile

log()

numpy.log(...)

y = log(x)

Natural logarithm, element-wise.

The natural logarithm `log` is the inverse of the exponential function,
so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`.

Parameters
----------
x : array_like
    Input value.

Returns
-------
y : ndarray
    The natural logarithm of `x`, element-wise.

See Also
--------
log10, log2, log1p

Notes
-----
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `exp(z) = x`. The convention is to return the `z`
whose imaginary part lies in `[-pi, pi]`.

For real-valued input data types, `log` always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `log` is a complex analytical function that
has a branch cut `[-inf, 0]` and is continuous from above on it. `log`
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

Examples
--------
>>> np.log([1, np.e, np.e**2, 0])
array([  0.,   1.,   2., -Inf])

log10()

numpy.log10(...)

y = log10(x)

Compute the logarithm in base 10 element-wise.

Parameters
----------
x : array_like
    Input values.

Returns
-------
y : ndarray
    Base-10 logarithm of `x`.

Notes
-----
Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `10**z = x`. The convention is to return the `z`
whose imaginary part lies in `[-pi, pi]`.

For real-valued input data types, `log10` always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `log10` is a complex analytical function that
has a branch cut `[-inf, 0]` and is continuous from above on it. `log10`
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

Examples
--------
>>> np.log10([1.e-15,-3.])
array([-15.,  NaN])

log1p()

numpy.log1p(...)

y = log1p(x)

`log(1 + x)` in base `e`, elementwise.

Parameters
----------
x : array_like
    Input values.

Returns
-------
y : ndarray
    Natural logarithm of `1 + x`, elementwise.

Notes
-----
For real-valued input, `log1p` is accurate also for `x` so small
that `1 + x == 1` in floating-point accuracy.

Logarithm is a multivalued function: for each `x` there is an infinite
number of `z` such that `exp(z) = 1 + x`. The convention is to return
the `z` whose imaginary part lies in `[-pi, pi]`.

For real-valued input data types, `log1p` always returns real output. For
each value that cannot be expressed as a real number or infinity, it
yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `log1p` is a complex analytical function that
has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p`
handles the floating-point negative zero as an infinitesimal negative
number, conforming to the C99 standard.

References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/
.. [2] Wikipedia, "Logarithm". http://en.wikipedia.org/wiki/Logarithm

Examples
--------
>>> np.log1p(1e-99)
1e-99
>>> np.log(1 + 1e-99)
0.0

log2()

numpy.log2(x, y=None)

Return the base 2 logarithm.

Parameters
----------
x : array_like
  Input array.
y : array_like
  Optional output array with the same shape as `x`.

Returns
-------
y : ndarray
  The logarithm to the base 2 of `x` elementwise.
  NaNs are returned where `x` is negative.

See Also
--------
log, log1p, log10

Examples
--------
>>> np.log2([-1,2,4])
array([ NaN,   1.,   2.])

logical_and()

numpy.logical_and(...)

y = logical_and(x1,x2)

Compute the truth value of x1 AND x2 elementwise.

Parameters
----------
x1, x2 : array_like
    Logical AND is applied to the elements of `x1` and `x2`.
    They have to be of the same shape.


Returns
-------
y : {ndarray, bool}
    Boolean result with the same shape as `x1` and `x2` of the logical
    AND operation on elements of `x1` and `x2`.

See Also
--------
logical_or, logical_not, logical_xor
bitwise_and

Examples
--------
>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
array([False, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
array([False, False,  True,  True, False], dtype=bool)

>>> from numpy import *
>>> logical_and(array([0,0,1,1]), array([0,1,0,1]))
array([False, False, False, True], dtype=bool)
>>> logical_and(array([False,False,True,True]), array([False,True,False,True]))
array([False, False, False, True], dtype=bool)

See also: logical_or, logical_not, logical_xor, bitwise_and

logical_not()

numpy.logical_not(...)

y = logical_not(x)

Compute the truth value of NOT x elementwise.

Parameters
----------
x : array_like
    Logical NOT is applied to the elements of `x`.

Returns
-------
y : {ndarray, bool}
    Boolean result with the same shape as `x` of the NOT operation
    on elements of `x`.

See Also
--------
logical_and, logical_or, logical_xor

Examples
--------
>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
array([False,  True,  True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_not(x<3)
array([False, False, False,  True,  True], dtype=bool)

>>> from numpy import *
>>> logical_not(array([0,1]))
>>> logical_not(array([False,True]))

See also: logical_or, logical_not, logical_xor, bitwise_and

logical_or()

numpy.logical_or(...)

y = logical_or(x1,x2)

Compute the truth value of x1 OR x2 elementwise.

Parameters
----------
x1, x2 : array_like
    Logical OR is applied to the elements of `x1` and `x2`.
    They have to be of the same shape.

Returns
-------
y : {ndarray, bool}
    Boolean result with the same shape as `x1` and `x2` of the logical
    OR operation on elements of `x1` and `x2`.

See Also
--------
logical_and, logical_not, logical_xor
bitwise_or

Examples
--------
>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
array([ True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
array([ True, False, False, False,  True], dtype=bool)

>>> from numpy import *
>>> logical_or(array([0,0,1,1]), array([0,1,0,1]))
>>> logical_or(array([False,False,True,True]), array([False,True,False,True]))

See also: logical_and, logical_not, logical_xor, bitwise_or

logical_xor()

numpy.logical_xor(...)

y = logical_xor(x1,x2)

Compute the truth value of x1 XOR x2 elementwise.

Parameters
----------
x1, x2 : array_like
    Logical XOR is applied to the elements of `x1` and `x2`.
    They have to be of the same shape.

Returns
-------
y : {ndarray, bool}
    Boolean result with the same shape as `x1` and `x2` of the logical
    XOR operation on elements of `x1` and `x2`.

See Also
--------
logical_and, logical_or, logical_not
bitwise_xor

Examples
--------
>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False,  True,  True, False], dtype=bool)

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([ True, False, False, False,  True], dtype=bool)

>>> from numpy import *
>>> logical_xor(array([0,0,1,1]), array([0,1,0,1]))
>>> logical_xor(array([False,False,True,True]), array([False,True,False,True]))

See also: logical_or, logical_not, logical_or, bitwise_xor

logspace()

numpy.logspace(start, stop, num=50, endpoint=True, base=10.0)

Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at ``base ** start``
(`base` to the power of `start`) and ends with ``base ** stop``
(see `endpoint` below).

Parameters
----------
start : float
    ``base ** start`` is the starting value of the sequence.
stop : float
    ``base ** stop`` is the final value of the sequence, unless `endpoint`
    is False.  In that case, ``num + 1`` values are spaced over the
    interval in log-space, of which all but the last (a sequence of
    length ``num``) are returned.
num : integer, optional
    Number of samples to generate.  Default is 50.
endpoint : boolean, optional
    If true, `stop` is the last sample. Otherwise, it is not included.
    Default is True.
base : float, optional
    The base of the log space. The step size between the elements in
    ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
    Default is 10.0.

Returns
-------
samples : ndarray
    `num` samples, equally spaced on a log scale.

See Also
--------
arange : Similiar to linspace, with the step size specified instead of the
         number of samples. Note that, when used with a float endpoint, the
         endpoint may or may not be included.
linspace : Similar to logspace, but with the samples uniformly distributed
           in linear space, instead of log space.

Notes
-----
Logspace is equivalent to the code

>>> y = linspace(start, stop, num=num, endpoint=endpoint)
>>> power(base, y)

Examples
--------
>>> np.logspace(2.0, 3.0, num=4)
    array([  100.        ,   215.443469  ,   464.15888336,  1000.        ])
>>> np.logspace(2.0, 3.0, num=4, endpoint=False)
    array([ 100.        ,  177.827941  ,  316.22776602,  562.34132519])
>>> np.logspace(2.0, 3.0, num=4, base=2.0)
    array([ 4.        ,  5.0396842 ,  6.34960421,  8.        ])

Graphical illustration:

>>> import matplotlib.pyplot as plt
>>> N = 10
>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros(N)
>>> plt.plot(x1, y, 'o')
>>> plt.plot(x2, y + 0.5, 'o')
>>> plt.ylim([-0.5, 1])
>>> plt.show()

>>> from numpy import *
>>> logspace(-2, 3, num = 6)                                     # 6 evenly spaced pts on a logarithmic scale, from 10^{-2} to 10^3 incl.
array([  1.00000000e-02,   1.00000000e-01,   1.00000000e+00,
1.00000000e+01,   1.00000000e+02,   1.00000000e+03])
>>> logspace(-2, 3, num = 10)                                   # 10 evenly spaced pts on a logarithmic scale, from 10^{-2} to 10^3 incl.
array([  1.00000000e-02,   3.59381366e-02,   1.29154967e-01,
4.64158883e-01,   1.66810054e+00,   5.99484250e+00,
2.15443469e+01,   7.74263683e+01,   2.78255940e+02,
1.00000000e+03])
>>> logspace(-2, 3, num = 6, endpoint=False)                   # 6 evenly spaced pts on a logarithmic scale, from 10^{-2} to 10^3 EXCL.
array([  1.00000000e-02,   6.81292069e-02,   4.64158883e-01,
3.16227766e+00,   2.15443469e+01,   1.46779927e+02])
>>> exp(linspace(log(0.01), log(1000), num=6, endpoint=False))         # for comparison
array([  1.00000000e-02,   6.81292069e-02,   4.64158883e-01,
3.16227766e+00,   2.15443469e+01,   1.46779927e+02])

See also: arange, linspace, r_

lookfor()

numpy.lookfor(what, module=None, import_modules=True, regenerate=False)

Do a keyword search on docstrings.

A list of of objects that matched the search is displayed,
sorted by relevance.

Parameters
----------
what : str
    String containing words to look for.
module : str, module
    Module whose docstrings to go through.
import_modules : bool
    Whether to import sub-modules in packages.
    Will import only modules in ``__all__``.
regenerate : bool
    Whether to re-generate the docstring cache.

Examples
--------

>>> np.lookfor('binary representation')
Search results for 'binary representation'
------------------------------------------
numpy.binary_repr
    Return the binary representation of the input number as a string.

lstsq()

numpy.linalg.lstsq(a, b, rcond=-1)

Return the least-squares solution to an equation.

Solves the equation `a x = b` by computing a vector `x` that minimizes
the norm `|| b - a x ||`.

Parameters
----------
a : array_like, shape (M, N)
    Input equation coefficients.
b : array_like, shape (M,) or (M, K)
    Equation target values.  If `b` is two-dimensional, the least
    squares solution is calculated for each of the `K` target sets.
rcond : float, optional
    Cutoff for ``small`` singular values of `a`.
    Singular values smaller than `rcond` times the largest singular
    value are  considered zero.

Returns
-------
x : ndarray, shape(N,) or (N, K)
     Least squares solution.  The shape of `x` depends on the shape of
     `b`.
residues : ndarray, shape(), (1,), or (K,)
    Sums of residues; squared Euclidian norm for each column in
    `b - a x`.
    If the rank of `a` is < N or > M, this is an empty array.
    If `b` is 1-dimensional, this is a (1,) shape array.
    Otherwise the shape is (K,).
rank : integer
    Rank of matrix `a`.
s : ndarray, shape(min(M,N),)
    Singular values of `a`.

Raises
------
LinAlgError
    If computation does not converge.

Notes
-----
If `b` is a matrix, then all array results returned as
matrices.

Examples
--------
Fit a line, ``y = mx + c``, through some noisy data-points:

>>> x = np.array([0, 1, 2, 3])
>>> y = np.array([-1, 0.2, 0.9, 2.1])

By examining the coefficients, we see that the line should have a
gradient of roughly 1 and cuts the y-axis at more-or-less -1.

We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:

>>> A = np.vstack([x, np.ones(len(x))]).T
>>> A
array([[ 0.,  1.],
       [ 1.,  1.],
       [ 2.,  1.],
       [ 3.,  1.]])

>>> m, c = np.linalg.lstsq(A, y)[0]
>>> print m, c
1.0 -0.95

Plot the data along with the fitted line:

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o', label='Original data', markersize=10)
>>> plt.plot(x, m*x + c, 'r', label='Fitted line')
>>> plt.legend()
>>> plt.show()

lstsq() is most often used in the context of least-squares fitting of data. Suppose you obtain some noisy data y as a function of a variable t, e.g. velocity as a function of time. You can use lstsq() to fit a model to the data, if the model is linear in its parameters, that is if

y = p0 * f0(t) + p1 * f1(t) + ... + pN-1 * fN-1(t) + noise

where the pi are the parameters you want to obtain through fitting and the fi(t) are known functions of t. What follows is an example how you can do this.

First, for the example's sake, some data is simulated:

>>> from numpy import *
>>> from numpy.random import normal
>>> t = arange(0.0, 10.0, 0.05)                                                         # independent variable
>>> y = 2.0 * sin(2.*pi*t*0.6) + 2.7 * cos(2.*pi*t*0.6) + normal(0.0, 1.0, len(t))

We would like to fit this data with: model(t) = p0 * sin(2.*pi*t*0.6) + p1 * cos(2.*pi*t*0.6), where p0 and p1 are the unknown fit parameters. Here we go:

>>> from numpy.linalg import lstsq
>>> Nparam = 2                                                     # we want to estimate 2 parameters: p_0 and p_1
>>> A = zeros((len(t),Nparam), float)                              # one big array with all the f_i(t)
>>> A[:,0] = sin(2.*pi*t*0.6)                                      # f_0(t) stored
>>> A[:,1] = cos(2.*pi*t*0.6)                                      # f_1(t) stored
>>> (p, residuals, rank, s) = lstsq(A,y)
>>> p                                                              # our final estimate of the parameters using noisy data
array([ 1.9315685 ,  2.71165171])
>>> residuals                                                      # sum of the residuals: sum((p[0] * A[:,0] + p[1] * A[:,1] - y)**2)
array([ 217.23783374])
>>> rank                                                           # rank of the array A
2
>>> s                                                              # singular values of A
array([ 10.,  10.])

See also: pinv, polyfit, solve

mat()

numpy.mat(data, dtype=None)

Interpret the input as a matrix.

Unlike `matrix`, `asmatrix` does not make a copy if the input is already
a matrix or an ndarray.  Equivalent to ``matrix(data, copy=False)``.

Parameters
----------
data : array_like
    Input data.

Returns
-------
mat : matrix
    `data` interpreted as a matrix.

Examples
--------
>>> x = np.array([[1, 2], [3, 4]])

>>> m = np.asmatrix(x)

>>> x[0,0] = 5

>>> m
matrix([[5, 2],
        [3, 4]])

>>> from numpy import *
>>> mat('1 3 4; 5 6 9')                            # matrices are always 2-dimensional
matrix([[1, 3, 4],
[5, 6, 9]])
>>> a = array([[1,2],[3,4]])
>>> m = mat(a)                                     # convert 2-d array to matrix
>>> m
matrix([[1, 2],
[3, 4]])
>>> a[0]                                           # result is 1-dimensional
array([1, 2])
>>> m[0]                                           # result is 2-dimensional
matrix([[1, 2]])
>>> a.ravel()                                      # result is 1-dimensional
array([1, 2, 3, 4])
>>> m.ravel()                                      # result is 2-dimensional
matrix([[1, 2, 3, 4]])
>>> a*a                                            # element-by-element multiplication
array([[ 1,  4],
[ 9, 16]])
>>> m*m                                            # (algebraic) matrix multiplication
matrix([[ 7, 10],
[15, 22]])
>>> a**3                                           # element-wise power
array([[ 1,  8],
[27, 64]])
>>> m**3                                           # matrix multiplication m*m*m
matrix([[ 37,  54],
[ 81, 118]])
>>> m.T                                            # transpose of the matrix
matrix([[1, 3],
[2, 4]])
>>> m.H                                            # conjugate transpose (differs from .T for complex matrices)
matrix([[1, 3],
[2, 4]])
>>> m.I                                            # inverse matrix
matrix([[-2. ,  1. ],
[ 1.5, -0.5]])

See also: bmat, array, dot, asmatrix

matrix()

numpy.matrix(...)

matrix(data, dtype=None, copy=True)

Returns a matrix from an array-like object, or from a string
of data.  A matrix is a specialized 2-d array that retains
its 2-d nature through operations.  It has certain special
operators, such as ``*`` (matrix multiplication) and
``**`` (matrix power).

Parameters
----------
data : array_like or string
   If data is a string, the string is interpreted as a matrix
   with commas or spaces separating columns, and semicolons
   separating rows.
dtype : data-type
   Data-type of the output matrix.
copy : bool
   If data is already an ndarray, then this flag determines whether
   the data is copied, or whether a view is constructed.

See Also
--------
array

Examples
--------
>>> a = np.matrix('1 2; 3 4')
>>> print a
[[1 2]
 [3 4]]

>>> np.matrix([[1, 2], [3, 4]])
matrix([[1, 2],
        [3, 4]])

>>> from numpy import *
>>> matrix('1 3 4; 5 6 9')                            # matrix is synonymous with mat
matrix([[1, 3, 4],
[5, 6, 9]])

See also: mat, asmatrix

max()

numpy.max(a, axis=None, out=None)

Return the maximum along an axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which to operate.  By default flattened input is used.
out : ndarray, optional
    Alternative output array in which to place the result.  Must
    be of the same shape and buffer length as the expected output.

Returns
-------
amax : ndarray
    A new array or a scalar with the result, or a reference to `out`
    if it was specified.

Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
       [2, 3]])
>>> np.amax(a, axis=0)
array([2, 3])
>>> np.amax(a, axis=1)
array([1, 3])

ndarray.max(...)

a.max(axis=None, out=None)

Return the maximum along a given axis.

Refer to `numpy.amax` for full documentation.

See Also
--------
numpy.amax : equivalent function

>>> from numpy import *
>>> a = array([10,20,30])
>>> a.max()
30
>>> a = array([[10,50,30],[60,20,40]])
>>> a.max()
60
>>> a.max(axis=0)                                # for each of the columns, find the maximum
array([60, 50, 40])
>>> a.max(axis=1)                                # for each of the rows, find the maximum
array([50, 60])
>>> max(a)                                       # also exists, but is slower

See also: nan, argmax, maximum, ptp

maximum()

numpy.maximum(...)

y = maximum(x1,x2)

Element-wise maximum of array elements.

Compare two arrays and returns a new array containing
the element-wise maxima.

Parameters
----------
x1, x2 : array_like
    The arrays holding the elements to be compared.

Returns
-------
y : {ndarray, scalar}
    The maximum of `x1` and `x2`, element-wise.  Returns scalar if
    both  `x1` and `x2` are scalars.

See Also
--------
minimum :
  element-wise minimum

Notes
-----
Equivalent to ``np.where(x1 > x2, x1, x2)`` but faster and does proper
broadcasting.

Examples
--------
>>> np.maximum([2, 3, 4], [1, 5, 2])
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2])
array([[ 1. ,  2. ],
       [ 0.5,  2. ]])

>>> from numpy import *
>>> a = array([1,0,5])
>>> b = array([3,2,4])
>>> maximum(a,b)                               # element-by-element comparison
array([3, 2, 5])
>>> max(a.tolist(),b.tolist())                 # standard Python function does not give the same!
[3, 2, 4]

See also: minimum, max, argmax

maximum_sctype()

numpy.maximum_sctype(t)

returns the sctype of highest precision of the same general kind as 't'

may_share_memory()

numpy.may_share_memory(a, b)

Determine if two arrays can share memory

The memory-bounds of a and b are computed.  If they overlap then
this function returns True.  Otherwise, it returns False.

A return of True does not necessarily mean that the two arrays
share any element.  It just means that they *might*.

mean()

numpy.mean(a, axis=None, dtype=None, out=None)

Compute the arithmetic mean along the specified axis.

Returns the average of the array elements.  The average is taken
over the flattened array by default, otherwise over the specified
axis. float64 intermediate and return values are used for integer
inputs.

Parameters
----------
a : array_like
    Array containing numbers whose mean is desired. If `a` is not an
    array, a conversion is attempted.
axis : int, optional
    Axis along which the means are computed. The default is to compute
    the mean of the flattened array.
dtype : dtype, optional
    Type to use in computing the mean. For integer inputs, the default
    is float64; for floating point, inputs it is the same as the input
    dtype.
out : ndarray, optional
    Alternative output array in which to place the result. It must have
    the same shape as the expected output but the type will be cast if
    necessary.

Returns
-------
mean : ndarray, see dtype parameter above
    If `out=None`, returns a new array containing the mean values,
    otherwise a reference to the output array is returned.

See Also
--------
average : Weighted average

Notes
-----
The arithmetic mean is the sum of the elements along the axis divided
by the number of elements.

Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.mean(a)
2.5
>>> np.mean(a,0)
array([ 2.,  3.])
>>> np.mean(a,1)
array([ 1.5,  3.5])

ndarray.mean(...)

a.mean(axis=None, dtype=None, out=None)

Returns the average of the array elements along given axis.

Refer to `numpy.mean` for full documentation.

See Also
--------
numpy.mean : equivalent function

>>> from numpy import *
>>> a = array([1,2,7])
>>> a.mean()
3.3333333333333335
>>> a = array([[1,2,7],[4,9,6]])
>>> a.mean()
4.833333333333333
>>> a.mean(axis=0)                             # the mean of each of the 3 columns
array([ 2.5,  5.5,  6.5])
>>> a.mean(axis=1)                             # the mean of each of the 2 rows
array([ 3.33333333,  6.33333333])

See also: average, median, var, std, sum

median()

numpy.median(a, axis=None, out=None, overwrite_input=False)

Compute the median along the specified axis.

Returns the median of the array elements.

Parameters
----------
a : array_like
    Input array or object that can be converted to an array.
axis : {None, int}, optional
    Axis along which the medians are computed. The default (axis=None) is to
    compute the median along a flattened version of the array.
out : ndarray, optional
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output,
    but the type (of the output) will be cast if necessary.
overwrite_input : {False, True}, optional
   If True, then allow use of memory of input array (a) for
   calculations. The input array will be modified by the call to
   median. This will save memory when you do not need to preserve
   the contents of the input array. Treat the input as undefined,
   but it will probably be fully or partially sorted. Default is
   False. Note that, if `overwrite_input` is True and the input
   is not already an ndarray, an error will be raised.

Returns
-------
median : ndarray
    A new array holding the result (unless `out` is specified, in
    which case that array is returned instead).  If the input contains
    integers, or floats of smaller precision than 64, then the output
    data-type is float64.  Otherwise, the output data-type is the same
    as that of the input.

See Also
--------
mean

Notes
-----
Given a vector V of length N, the median of V is the middle value of
a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is
odd.  When N is even, it is the average of the two middle values of
``V_sorted``.

Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5,  4.5,  2.5])
>>> np.median(a, axis=1)
array([ 7.,  2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5,  4.5,  2.5])
>>> m
array([ 6.5,  4.5,  2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7.,  2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)

>>> from numpy import *
>>> a = array([1,2,3,4,9])
>>> median(a)
3
>>> a = array([1,2,3,4,9,0])
>>> median(a)
2.5

See also: average, mean, var, std

meshgrid()

numpy.meshgrid(x, y)

Return coordinate matrices from two coordinate vectors.




Parameters
----------
x, y : ndarray
    Two 1D arrays representing the x and y coordinates

Returns
-------
X, Y : ndarray
    For vectors `x`, `y` with lengths Nx=len(`x`) and Ny=len(`y`),
    return `X`, `Y` where `X` and `Y` are (Ny, Nx) shaped arrays
    with the elements of `x` and y repeated to fill the matrix along
    the first dimension for `x`, the second for `y`.

See Also
--------
numpy.mgrid : Construct a multi-dimensional "meshgrid"
                           using indexing notation.

Examples
--------
>>> X, Y = numpy.meshgrid([1,2,3], [4,5,6,7])
>>> X
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]])
>>> Y
array([[4, 4, 4],
       [5, 5, 5],
       [6, 6, 6],
       [7, 7, 7]])

mgrid

numpy.mgrid

Construct a multi-dimensional "meshgrid".

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed.  The dimension and number of the output arrays are equal
to the number of indexing dimensions.  If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a **complex number** (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1

Examples
--------
>>> mgrid = np.lib.index_tricks.nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1],
        [2, 2, 2, 2, 2],
        [3, 3, 3, 3, 3],
        [4, 4, 4, 4, 4]],
<BLANKLINE>
       [[0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5,  0. ,  0.5,  1. ])
>>> ogrid = np.lib.index_tricks.nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
        [1],
        [2],
        [3],
        [4]]), array([[0, 1, 2, 3, 4]])]

>>> from numpy import *
>>> m = mgrid[1:3,2:5]                      # rectangular mesh grid  with x-values [1,2] and y-values [2,3,4]
>>> print m
[[[1 1 1]
[2 2 2]]
[[2 3 4]
[2 3 4]]]
>>> m[0,1,2]                                # x-value of grid point with index coordinates (1,2)
2
>>> m[1,1,2]                                # y-value of grid point with index coordinates (1,2)
4

See also: indices, ogrid

min()

numpy.min(a, axis=None, out=None)

Return the minimum along an axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which to operate.  By default a flattened input is used.
out : ndarray, optional
    Alternative output array in which to place the result.  Must
    be of the same shape and buffer length as the expected output.

Returns
-------
amin : ndarray
    A new array or a scalar with the result, or a reference to `out` if it
    was specified.

Examples
--------
>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],
       [2, 3]])
>>> np.amin(a)           # Minimum of the flattened array
0
>>> np.amin(a, axis=0)         # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1)         # Minima along the second axis
array([0, 2])

ndarray.min(...)

a.min(axis=None, out=None)

Return the minimum along a given axis.

Refer to `numpy.amin` for full documentation.

See Also
--------
numpy.amin : equivalent function

>>> from numpy import *
>>> a = array([10,20,30])
>>> a.min()
10
>>> a = array([[10,50,30],[60,20,40]])
>>> a.min()
10
>>> a.min(axis=0)                           # for each of the columns, find the minimum
array([10, 20, 30])
>>> a.min(axis=1)                           # for each of the rows, find the minimum
array([10, 20])
>>> min(a)                                  # also exists, but is slower

See also: nan, max, minimum, argmin, ptp

minimum()

numpy.minimum(...)

y = minimum(x1,x2)

Element-wise minimum of array elements.

Compare two arrays and returns a new array containing
the element-wise minima.

Parameters
----------
x1, x2 : array_like
    The arrays holding the elements to be compared.

Returns
-------
y : {ndarray, scalar}
    The minimum of `x1` and `x2`, element-wise.  Returns scalar if
    both  `x1` and `x2` are scalars.

See Also
--------
maximum :
    element-wise maximum

Notes
-----
Equivalent to ``np.where(x1 < x2, x1, x2)`` but faster and does proper
broadcasting.

Examples
--------
>>> np.minimum([2, 3, 4], [1, 5, 2])
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2])
array([[ 0.5,  0. ],
       [ 0. ,  1. ]])

>>> from numpy import *
>>> a = array([1,0,5])
>>> b = array([3,2,4])
>>> minimum(a,b)                          # element-by-element comparison
array([1, 0, 4])
>>> min(a.tolist(),b.tolist())            # Standard Python function does not give the same!
[1, 0, 5]

See also: min, maximum, argmin

mintypecode()

numpy.mintypecode(typechars, typeset='GDFgdf', default='d')

Return a minimum data type character from typeset that
handles all typechars given

The returned type character must be the smallest size such that
an array of the returned type can handle the data from an array of
type t for each t in typechars (or if typechars is an array,
then its dtype.char).

If the typechars does not intersect with the typeset, then default
is returned.

If t in typechars is not a string then t=asarray(t).dtype.char is
applied.

mirr()

numpy.mirr(values, finance_rate, reinvest_rate)

Modified internal rate of return.

Parameters
----------
values : array_like
    Cash flows (must contain at least one positive and one negative value)
    or nan is returned.
finance_rate : scalar
    Interest rate paid on the cash flows
reinvest_rate : scalar
    Interest rate received on the cash flows upon reinvestment

Returns
-------
out : float
    Modified internal rate of return

mod()

numpy.mod(...)

y = remainder(x1,x2)

Returns element-wise remainder of division.

Computes `x1 - floor(x1/x2)*x2`.

Parameters
----------
x1 : array_like
    Dividend array.
x2 : array_like
    Divisor array.

Returns
-------
y : ndarray
    The remainder of the quotient `x1/x2`, element-wise. Returns a scalar
    if both  `x1` and `x2` are scalars.

See Also
--------
divide
floor

Notes
-----
Returns 0 when `x2` is 0.

Examples
--------
>>> np.remainder([4,7],[2,3])
array([0, 1])

modf()

numpy.modf(...)

y1,y2 = modf(x)

Return the fractional and integral part of a number.

The fractional and integral parts are negative if the given number is
negative.

Parameters
----------
x : array_like
    Input number.

Returns
-------
y1 : ndarray
    Fractional part of `x`.
y2 : ndarray
    Integral part of `x`.

Examples
--------
>>> np.modf(2.5)
(0.5, 2.0)
>>> np.modf(-.4)
(-0.40000000000000002, -0.0)

msort()

numpy.msort(a)

Return a copy of an array sorted along the first axis.

Parameters
----------
a : array_like
    Array to be sorted.

Returns
-------
sorted_array : ndarray
    Array of the same type and shape as `a`.

See Also
--------
sort

Notes
-----
``np.msort(a)`` is equivalent to  ``np.sort(a, axis=0)``.

multiply()

numpy.multiply(...)

y = multiply(x1,x2)

Multiply arguments elementwise.

Parameters
----------
x1, x2 : array_like
    The arrays to be multiplied.

Returns
-------
y : ndarray
    The product of `x1` and `x2`, elementwise. Returns a scalar if
    both  `x1` and `x2` are scalars.

Notes
-----
Equivalent to `x1` * `x2` in terms of array-broadcasting.

Examples
--------
>>> np.multiply(2.0, 4.0)
8.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[  0.,   1.,   4.],
       [  0.,   4.,  10.],
       [  0.,   7.,  16.]])

>>> from numpy import *
>>> multiply(array([3,6]), array([4,7]))
array([12, 42])

See also: dot

nan

numpy.nan

float(x) -> floating point number

Convert a string or number to a floating point number, if possible.

>>> from numpy import *
>>> sqrt(array([-1.0]))
array([                  nan])                  # nan = NaN = Not A Number
>>> x = array([2, nan, 1])
>>> isnan(x)                                    # show which elements are nan
array([False, True, False], dtype=bool)
>>> isfinite(x)                                 # show which elements are not nan/inf/-inf
array([True, False, True], dtype=bool)
>>> nansum(x)                                   # same as sum() but ignore nan elements
3.0
>>> nanmax(x)                                   # same as max() but ignore nan elements
2.0
>>> nanmin(x)                                   # same as min() but ignore nan elements
1.0
>>> nanargmin(x)                                # same as argmin() but ignore nan elements
2
>>> nanargmax(x)                                # same as argmax() but ignore nan elements
0
>>> nan_to_num(x)                               # replace all nan elements with 0.0
array([ 2.,  0.,  1.])

See also: inf

nan_to_num()

numpy.nan_to_num(x)

Replace nan with zero and inf with large numbers.

Parameters
----------
x : array_like
    Input data.

Returns
-------
out : ndarray
    Array with the same shape and dtype as `x`.  Nan is replaced
    by zero, and inf (-inf) is replaced by the largest (smallest)
    floating point value that fits in the output dtype.

Examples
--------
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
>>> np.nan_to_num(x)
array([  1.79769313e+308,  -1.79769313e+308,   0.00000000e+000,
        -1.28000000e+002,   1.28000000e+002])

nanargmax()

numpy.nanargmax(a, axis=None)

Return indices of the maximum values over an axis, ignoring NaNs.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which to operate.  By default flattened input is used.

Returns
-------
index_array : ndarray
    An array of indices or a single index value.

See Also
--------
argmax, nanargmin

Examples
--------
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 1])
>>> np.nanargmax(a, axis=1)
array([1, 0])

nanargmin()

numpy.nanargmin(a, axis=None)

Return indices of the minimum values along an axis, ignoring NaNs.


See Also
--------
nanargmax : corresponding function for maxima; see for details.

nanmax()

numpy.nanmax(a, axis=None)

Return the maximum of array elements over the given axis ignoring any NaNs.

Parameters
----------
a : array_like
    Array containing numbers whose maximum is desired. If `a` is not
    an array, a conversion is attempted.
axis : int, optional
    Axis along which the maximum is computed.The default is to compute
    the maximum of the flattened array.

Returns
-------
y : ndarray
    An array with the same shape as `a`, with the specified axis removed.
    If `a` is a 0-d array, or if axis is None, a scalar is returned. The
    the same dtype as `a` is returned.

See Also
--------
numpy.amax : Maximum across array including any Not a Numbers.
numpy.nanmin : Minimum across array ignoring any Not a Numbers.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a Number, positive and
         negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative infinity
is treated as a very small (i.e. negative) number.

If the input has a integer type, an integer type is returned unless
the input contains NaNs and infinity.

Examples
--------
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([ 3.,  2.])
>>> np.nanmax(a, axis=1)
array([ 2.,  3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

nanmin()

numpy.nanmin(a, axis=None)

Return the minimum of array elements over the given axis ignoring any NaNs.

Parameters
----------
a : array_like
    Array containing numbers whose sum is desired. If `a` is not
    an array, a conversion is attempted.
axis : int, optional
    Axis along which the minimum is computed.The default is to compute
    the minimum of the flattened array.

Returns
-------
y : {ndarray, scalar}
    An array with the same shape as `a`, with the specified axis removed.
    If `a` is a 0-d array, or if axis is None, a scalar is returned. The
    the same dtype as `a` is returned.


See Also
--------
numpy.amin : Minimum across array including any Not a Numbers.
numpy.nanmax : Maximum across array ignoring any Not a Numbers.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a Number, positive and
         negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative infinity
is treated as a very small (i.e. negative) number.

If the input has a integer type, an integer type is returned unless
the input contains NaNs and infinity.


Examples
--------
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([ 1.,  2.])
>>> np.nanmin(a, axis=1)
array([ 1.,  3.])

When positive infinity and negative infinity are present:

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf

nansum()

numpy.nansum(a, axis=None)

Return the sum of array elements over a given axis treating
Not a Numbers (NaNs) as zero.

Parameters
----------
a : array_like
    Array containing numbers whose sum is desired. If `a` is not an
    array, a conversion is attempted.
axis : int, optional
    Axis along which the sum is computed. The default is to compute
    the sum of the flattened array.

Returns
-------
y : ndarray
    An array with the same shape as a, with the specified axis removed.
    If a is a 0-d array, or if axis is None, a scalar is returned with
    the same dtype as `a`.

See Also
--------
numpy.sum : Sum across array including Not a Numbers.
isnan : Shows which elements are Not a Number (NaN).
isfinite: Shows which elements are not: Not a Number, positive and
         negative infinity

Notes
-----
Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
If positive or negative infinity are present the result is positive or
negative infinity. But if both positive and negative infinity are present,
the result is Not A Number (NaN).

Arithmetic is modular when using integer types (all elements of `a` must
be finite i.e. no elements that are NaNs, positive infinity and negative
infinity because NaNs are floating point types), and no error is raised
on overflow.


Examples
--------
>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([ 2.,  1.])

When positive infinity and negative infinity are present

>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> np.nansum([1, np.nan, np.inf, np.NINF])
nan

ndenumerate()

numpy.ndenumerate(...)

Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.

Parameters
----------
a : ndarray
  Input array.

Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> for index, x in np.ndenumerate(a):
...     print index, x
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4

>>> from numpy import *
>>> a = arange(9).reshape(3,3) + 10
>>> a
array([[10, 11, 12],
[13, 14, 15],
[16, 17, 18]])
>>> b = ndenumerate(a)
>>> for position,value in b: print position,value                  # position is the N-dimensional index
...
(0, 0) 10
(0, 1) 11
(0, 2) 12
(1, 0) 13
(1, 1) 14
(1, 2) 15
(2, 0) 16
(2, 1) 17
(2, 2) 18

See also: broadcast, ndindex

ndim() or .ndim

numpy.ndim(a)

Return the number of dimensions of an array.

Parameters
----------
a : array_like
    Input array.  If it is not already an ndarray, a conversion is
    attempted.

Returns
-------
number_of_dimensions : int
    The number of dimensions in `a`.  Scalars are zero-dimensional.

See Also
--------
ndarray.ndim : equivalent method
shape : dimensions of array
ndarray.shape : dimensions of array

Examples
--------
>>> np.ndim([[1,2,3],[4,5,6]])
2
>>> np.ndim(np.array([[1,2,3],[4,5,6]]))
2
>>> np.ndim(1)
0

ndarray.ndim

Number of array dimensions.

Examples
--------

>>> x = np.array([1,2,3])
>>> x.ndim
1
>>> y = np.zeros((2,3,4))
>>> y.ndim
3

>>> from numpy import *
>>> a = arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> a.ndim                     # a has 2 axes
2
>>> a.shape = (2,2,3)
array([[[ 0,  1,  2],
[ 3,  4,  5]],
[[ 6,  7,  8],
[ 9, 10, 11]]])
>>> a.ndim                     # now a has 3 axes
3
>>> len(a.shape)               # same as ndim
3

See also: shape

ndindex()

numpy.ndindex(...)

Pass in a sequence of integers corresponding
to the number of dimensions in the counter.  This iterator
will then return an N-dimensional counter.

Example:
>>> for index in np.ndindex(3,2,1):
...     print index
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)

>>> for index in ndindex(4,3,2):
print index
(0,0,0)
(0,0,1)
(0,1,0)
...
(3,1,1)
(3,2,0)
(3,2,1)

See also: broadcast, ndenumerate

negative()

numpy.negative(...)

y = negative(x)

Returns an array with the negative of each element of the original array.

Parameters
----------
x : {array_like, scalar}
    Input array.

Returns
-------
y : {ndarray, scalar}
    Returned array or scalar `y=-x`.

Examples
--------
>>> np.negative([1.,-1.])
array([-1.,  1.])

newaxis

numpy.newaxis

>>> from numpy import *
>>> x = arange(3)
>>> x
array([0, 1, 2])
>>> x[:,newaxis]                            # add a new dimension/axis
array([[0],
[1],
[2]])
>>> x[:,newaxis,newaxis]                    # add two new dimensions/axes
array([[[0]],
[[1]],
[[2]]])
>>> x[:,newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])
>>> y = arange(3,6)
>>> x[:,newaxis] * y                       # outer product, same as outer(x,y)
array([[ 0,  0,  0],
[ 3,  4,  5],
[ 6,  8, 10]])
>>> x.shape
(3,)
>>> x[newaxis,:].shape                     # x[newaxis,:] is equivalent to x[newaxis] and x[None]
(1,3)
>>> x[:,newaxis].shape
(3,1)

See also: [], atleast_1d, atleast_2d, atleast_3d, expand_dims

newbuffer()

numpy.newbuffer(...)

newbuffer(size)

Return a new uninitialized buffer object of size bytes

newbyteorder()

ndarray.newbyteorder(...)

a.newbyteorder(byteorder)

Equivalent to a.view(a.dtype.newbytorder(byteorder))

nonzero()

numpy.nonzero(a)

Return the indices of the elements that are non-zero.

Returns a tuple of arrays, one for each dimension of `a`, containing
the indices of the non-zero elements in that dimension. The
corresponding non-zero values can be obtained with::

    a[nonzero(a)]

To group the indices by element, rather than dimension, use::

    transpose(nonzero(a))

The result of this is always a 2-D array, with a row for
each non-zero element.

Parameters
----------
a : array_like
    Input array.

Returns
-------
tuple_of_arrays : tuple
    Indices of elements that are non-zero.

See Also
--------
flatnonzero :
    Return indices that are non-zero in the flattened version of the input
    array.
ndarray.nonzero :
    Equivalent ndarray method.

Examples
--------
>>> x = np.eye(3)
>>> x
array([[ 1.,  0.,  0.],
       [ 0.,  1.,  0.],
       [ 0.,  0.,  1.]])
>>> np.nonzero(x)
(array([0, 1, 2]), array([0, 1, 2]))

>>> x[np.nonzero(x)]
array([ 1.,  1.,  1.])
>>> np.transpose(np.nonzero(x))
array([[0, 0],
       [1, 1],
       [2, 2]])

ndarray.nonzero(...)

a.nonzero()

Return the indices of the elements that are non-zero.

Refer to `numpy.nonzero` for full documentation.

See Also
--------
numpy.nonzero : equivalent function

>>> from numpy import *
>>> x = array([1,0,2,-1,0,0,8])
>>> indices = x.nonzero()                     # find the indices of the nonzero elements
>>> indices
(array([0, 2, 3, 6]),)
>>> x[indices]
array([1,  2, -1,  8])
>>> y = array([[0,1,0],[2,0,3]])
>>> indices = y.nonzero()
>>> indices
(array([0, 1, 1]), array([1, 0, 2]))
>>> y[indices[0],indices[1]]                  # one way of doing it, explains what's in indices[0] and indices[1]
array([3, 4, 5])
>>> y[indices]                                # this way is shorter
array([3, 4, 5])
>>> y = array([1,3,5,7])
>>> indices = (y >= 5).nonzero()
>>> y[indices]
array([5, 7])
>>> nonzero(y)                                # function also exists
(array([0, 1, 2, 3]),)

See also: [], where, compress, choose, take

not_equal()

numpy.not_equal(...)

y = not_equal(x1,x2)

Return (x1 != x2) element-wise.

Parameters
----------
x1, x2 : array_like
  Input arrays.
out : ndarray, optional
  A placeholder the same shape as `x1` to store the result.

Returns
-------
not_equal : ndarray bool, scalar bool
  For each element in `x1, x2`, return True if `x1` is not equal
  to `x2` and False otherwise.


See Also
--------
equal, greater, greater_equal, less, less_equal

Examples
--------
>>> np.not_equal([1.,2.], [1., 3.])
array([False,  True], dtype=bool)

nper()

numpy.nper(rate, pmt, pv, fv=0, when='end')

Compute the number of periods.

Parameters
----------
rate : array_like
    Rate of interest (per period)
pmt : array_like
    Payment
pv : array_like
    Present value
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))

Notes
-----
The number of periods ``nper`` is computed by solving the equation::

  fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) == 0

or, when ``rate == 0``::

  fv + pv + pmt * nper == 0

Examples
--------
If you only had $150 to spend as payment, how long would it take to pay-off
a loan of $8,000 at 7% annual interest?

>>> np.nper(0.07/12, -150, 8000)
64.073348770661852

So, over 64 months would be required to pay off the loan.

The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.

>>> np.nper(*(np.ogrid[0.06/12:0.071/12:0.01/12, -200:-99:100, 6000:7001:1000]))
array([[[ 32.58497782,  38.57048452],
        [ 71.51317802,  86.37179563]],
<BLANKLINE>
       [[ 33.07413144,  39.26244268],
        [ 74.06368256,  90.22989997]]])

npv()

numpy.npv(rate, values)

Returns the NPV (Net Present Value) of a cash flow series.

Parameters
----------
rate : scalar
    The discount rate.
values : array_like, shape(M, )
    The values of the time series of cash flows.  Must be the same
    increment as the `rate`.

Returns
-------
out : float
    The NPV of the input cash flow series `values` at the discount `rate`.

Notes
-----
Returns the result of:

.. math :: \sum_{t=1}^M{\frac{values_t}{(1+rate)^{t

}}}

obj2sctype()

numpy.obj2sctype(rep, default=None)

ogrid

numpy.ogrid

Construct a multi-dimensional "meshgrid".

grid = nd_grid() creates an instance which will return a mesh-grid
when indexed.  The dimension and number of the output arrays are equal
to the number of indexing dimensions.  If the step length is not a
complex number, then the stop is not inclusive.

However, if the step length is a **complex number** (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.

If instantiated with an argument of sparse=True, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1

Examples
--------
>>> mgrid = np.lib.index_tricks.nd_grid()
>>> mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1],
        [2, 2, 2, 2, 2],
        [3, 3, 3, 3, 3],
        [4, 4, 4, 4, 4]],
<BLANKLINE>
       [[0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4],
        [0, 1, 2, 3, 4]]])
>>> mgrid[-1:1:5j]
array([-1. , -0.5,  0. ,  0.5,  1. ])
>>> ogrid = np.lib.index_tricks.nd_grid(sparse=True)
>>> ogrid[0:5,0:5]
[array([[0],
        [1],
        [2],
        [3],
        [4]]), array([[0, 1, 2, 3, 4]])]

>>> from numpy import *
>>> x,y = ogrid[0:3,0:3]                   # x and y are useful to use with broadcasting rules
>>> x
array([[0],
[1],
[2]])
>>> y
array([[0, 1, 2]])
>>> print x*y                              # example how to use broadcasting rules
[[0 0 0]
[0 1 2]
[0 2 4]]

See also: mgrid

ones()

numpy.ones(shape, dtype=None, order='C')

Return a new array of given shape and type, filled with ones.

Please refer to the documentation for `zeros`.

See Also
--------
zeros

Examples
--------
>>> np.ones(5)
array([ 1.,  1.,  1.,  1.,  1.])

>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[ 1.],
       [ 1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[ 1.,  1.],
       [ 1.,  1.]])

>>> from numpy import *
>>> ones(5)
array([ 1.,  1.,  1.,  1.,  1.])
>>> ones((2,3), int)
array([[1, 1, 1],
[1, 1, 1]])

See also: ones_like, zeros, empty, eye, identity

ones_like()

numpy.ones_like(...)

y = ones_like(x)

Returns an array of ones with the same shape and type as a given array.

Equivalent to ``a.copy().fill(1)``.

Please refer to the documentation for `zeros_like`.

See Also
--------
zeros_like

Examples
--------
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.ones_like(a)
array([[1, 1, 1],
       [1, 1, 1]])

>>> from numpy import *
>>> a = array([[1,2,3],[4,5,6]])
>>> ones_like(a)                                      # ones initialised array with the same shape and datatype as 'a'
array([[1, 1, 1],
[1, 1, 1]])

See also: ones, zeros_like

outer()

numpy.outer(a, b)

Returns the outer product of two vectors.

Given two vectors, ``[a0, a1, ..., aM]`` and ``[b0, b1, ..., bN]``,
the outer product becomes::

  [[a0*b0  a0*b1 ... a0*bN ]
   [a1*b0    .
   [ ...          .
   [aM*b0            aM*bN ]]

Parameters
----------
a : array_like, shaped (M,)
    First input vector.  If either of the input vectors are not
    1-dimensional, they are flattened.
b : array_like, shaped (N,)
    Second input vector.

Returns
-------
out : ndarray, shaped (M, N)
    ``out[i, j] = a[i] * b[j]``

Notes
-----
The outer product of vectors is a special case of the Kronecker product.

Examples
--------
>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.outer(x, [1, 2, 3])
array([[a, aa, aaa],
       [b, bb, bbb],
       [c, cc, ccc]], dtype=object)

>>> from numpy import *
>>> x = array([1,2,3])
>>> y = array([10,20,30])
>>> outer(x,y)                                # outer product
array([[10, 20, 30],
[20, 40, 60],
[30, 60, 90]])

See also: inner, cross

packbits()

numpy.packbits(...)

out = numpy.packbits(myarray, axis=None)

myarray : an integer type array whose elements should be packed to bits

 This routine packs the elements of a binary-valued dataset into a
 NumPy array of type uint8 ('B') whose bits correspond to
 the logical (0 or nonzero) value of the input elements.
 The dimension over-which bit-packing is done is given by axis.
 The shape of the output has the same number of dimensions as the input
 (unless axis is None, in which case the output is 1-d).

   Example:
   >>> a = array([[[1,0,1],
   ...             [0,1,0]],
   ...            [[1,1,0],
   ...             [0,0,1]]])
   >>> b = numpy.packbits(a,axis=-1)
   >>> b
   array([[[160],[64]],[[192],[32]]], dtype=uint8)

   Note that 160 = 128 + 32
             192 = 128 + 64

permutation()

numpy.random.permutation(...)

permutation(x)

Randomly permute a sequence, or return a permuted range.

Parameters
----------
x : int or array_like
    If `x` is an integer, randomly permute ``np.arange(x)``.
    If `x` is an array, make a copy and shuffle the elements
    randomly.

Returns
-------
out : ndarray
    Permuted sequence or array range.

Examples
--------
>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])

>>> np.random.permutation([1, 4, 9, 12, 15])
array([15,  1,  9,  4, 12])

>>> from numpy import *
>>> from numpy.random import permutation
>>> permutation(4)          # permutation of integers from 0 to 3
array([0, 3, 1, 2])
>>> permutation(4)          # another permutation of integers from 0 to 3
array([2, 1, 0, 3])
>>> permutation(4)          # yet another permutation of integers from 0 to 3
array([3, 0, 2, 1])

See also: shuffle, bytes, seed

piecewise()

numpy.piecewise(x, condlist, funclist, *args, **kw)

Evaluate a piecewise-defined function.

Given a set of conditions and corresponding functions, evaluate each
function on the input data wherever its condition is true.

Parameters
----------
x : (N,) ndarray
    The input domain.
condlist : list of M (N,)-shaped boolean arrays
    Each boolean array corresponds to a function in `funclist`.  Wherever
    `condlist[i]` is True, `funclist[i](x)` is used as the output value.

    Each boolean array in `condlist` selects a piece of `x`,
    and should therefore be of the same shape as `x`.

    The length of `condlist` must correspond to that of `funclist`.
    If one extra function is given, i.e. if the length of `funclist` is
    M+1, then that extra function is the default value, used wherever
    all conditions are false.
funclist : list of M or M+1 callables, f(x,*args,**kw), or values
    Each function is evaluated over `x` wherever its corresponding
    condition is True.  It should take an array as input and give an array
    or a scalar value as output.  If, instead of a callable,
    a value is provided then a constant function (``lambda x: value``) is
    assumed.
args : tuple, optional
    Any further arguments given to `piecewise` are passed to the functions
    upon execution, i.e., if called ``piecewise(...,...,1,'a')``, then
    each function is called as ``f(x,1,'a')``.
kw : dictionary, optional
    Keyword arguments used in calling `piecewise` are passed to the
    functions upon execution, i.e., if called
    ``piecewise(...,...,lambda=1)``, then each function is called as
    ``f(x,lambda=1)``.

Returns
-------
out : ndarray
    The output is the same shape and type as x and is found by
    calling the functions in `funclist` on the appropriate portions of `x`,
    as defined by the boolean arrays in `condlist`.  Portions not covered
    by any condition have undefined values.

Notes
-----
This is similar to choose or select, except that functions are
evaluated on elements of `x` that satisfy the corresponding condition from
`condlist`.

The result is::

        |--
        |funclist[0](x[condlist[0]])
  out = |funclist[1](x[condlist[1]])
        |...
        |funclist[n2](x[condlist[n2]])
        |--

Examples
--------
Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``.

>>> x = np.arange(6) - 2.5 # x runs from -2.5 to 2.5 in steps of 1
>>> np.piecewise(x, [x < 0, x >= 0.5], [-1,1])
array([-1., -1., -1.,  1.,  1.,  1.])

Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for
``x >= 0``.

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
array([ 2.5,  1.5,  0.5,  0.5,  1.5,  2.5])

>>> from numpy import *
>>> f1 = lambda x: x*x
>>> f2 = lambda x: 2*x
>>> x = arange(-2.,3.,0.1)
>>> condition = (x>1)&(x<2)                                              # boolean array
>>> y = piecewise(x,condition, [f1,1.])                                  # if condition is true, return f1, otherwise 1.
>>> y = piecewise(x, fabs(x)<=1, [f1,0]) + piecewise(x, x>1, [f2,0])     # 0. in ]-inf,-1[, f1 in [-1,+1], f2 in ]+1,+inf[
>>> print y
<snip>

See also: select

pinv()

numpy.linalg.pinv(a, rcond=1.0000000000000001e-015)

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate the generalized inverse of a matrix using its
singular-value decomposition (SVD) and including all
`large` singular values.

Parameters
----------
a : array_like (M, N)
  Matrix to be pseudo-inverted.
rcond : float
  Cutoff for `small` singular values.
  Singular values smaller than rcond*largest_singular_value are
  considered zero.

Returns
-------
B : ndarray (N, M)
  The pseudo-inverse of `a`. If `a` is an np.matrix instance, then so
  is `B`.


Raises
------
LinAlgError
  In case SVD computation does not converge.

Examples
--------
>>> a = np.random.randn(9, 6)
>>> B = np.linalg.pinv(a)
>>> np.allclose(a, np.dot(a, np.dot(B, a)))
True
>>> np.allclose(B, np.dot(B, np.dot(a, B)))
True

>>> from numpy import *
>>> from numpy.linalg import pinv,svd,lstsq
>>> A = array([[1., 3., 5.],[2., 4., 6.]])
>>> b = array([1., 3.])
>>>
>>> # Question: find x such that ||A*x-b|| is minimal
>>> # Answer:   x = pinvA * b,  with pinvA the pseudo-inverse of A
>>>
>>> pinvA = pinv(A)
>>> print pinvA
[[-1.33333333  1.08333333]
[-0.33333333  0.33333333]
[ 0.66666667 -0.41666667]]
>>> x = dot(pinvA, b)
>>> print x
[ 1.91666667  0.66666667 -0.58333333]
>>>
>>> # Relation with least-squares minimisation lstsq()
>>>
>>> x,resids,rank,s = lstsq(A,b)
>>> print x                                                                           # the same solution for x as above
[ 1.91666667  0.66666667 -0.58333333]
>>>
>>> # Relation with singular-value decomposition svd()
>>>
>>> U,sigma,V = svd(A)
>>> S = zeros_like(A.transpose())
>>> for n in range(len(sigma)): S[n,n] = 1. / sigma[n]
>>> dot(V.transpose(), dot(S, U.transpose()))                                         # = pinv(A)
array([[-1.33333333,  1.08333333],
[-0.33333333,  0.33333333],
[ 0.66666667, -0.41666667]])

See also: inv, lstsq, solve, svd

pkgload()

numpy.pkgload(*packages, **options)

Load one or more packages into parent package top-level namespace.

This function is intended to shorten the need to import many
subpackages, say of scipy, constantly with statements such as

  import scipy.linalg, scipy.fftpack, scipy.etc...

Instead, you can say:

  import scipy
  scipy.pkgload('linalg','fftpack',...)

or

  scipy.pkgload()

to load all of them in one call.

If a name which doesn't exist in scipy's namespace is
given, a warning is shown.

Parameters
----------
 *packages : arg-tuple
      the names (one or more strings) of all the modules one
      wishes to load into the top-level namespace.
 verbose= : integer
      verbosity level [default: -1].
      verbose=-1 will suspend also warnings.
 force= : bool
      when True, force reloading loaded packages [default: False].
 postpone= : bool
      when True, don't load packages [default: False]

place()

numpy.place(arr, mask, vals)

Changes elements of an array based on conditional and input values.

Similar to ``putmask(a, mask, vals)`` but the 1D array `vals` has the
same number of elements as the non-zero values of `mask`. Inverse of
``extract``.

Sets `a`.flat[n] = `values`\[n] for each n where `mask`.flat[n] is true.

Parameters
----------
a : array_like
    Array to put data into.
mask : array_like
    Boolean mask array.
values : array_like, shape(number of non-zero `mask`, )
    Values to put into `a`.

See Also
--------
putmask, put, take

pmt()

numpy.pmt(rate, nper, pv, fv=0, when='end')

Compute the payment against loan principal plus interest.

Parameters
----------
rate : array_like
    Rate of interest (per period)
nper : array_like
    Number of compounding periods
pv : array_like
    Present value
fv : array_like
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
    When payments are due ('begin' (1) or 'end' (0))

Returns
-------
out : ndarray
    Payment against loan plus interest.  If all input is scalar, returns a
    scalar float.  If any input is array_like, returns payment for each
    input element. If multiple inputs are array_like, they all must have
    the same shape.

Notes
-----
The payment ``pmt`` is computed by solving the equation::

 fv +
 pv*(1 + rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

or, when ``rate == 0``::

  fv + pv + pmt * nper == 0

Examples
--------
What would the monthly payment need to be to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?

>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619

In order to pay-off (i.e. have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required.

poisson()

numpy.random.poisson(...)

poisson(lam=1.0, size=None)

Poisson distribution.

>>> from numpy import *
>>> from numpy.random import *
>>> poisson(lam=0.5, size=(2,3))             # poisson distribution lambda=0.5
array([[2, 0, 0],
[1, 1, 0]])

See also: random_sample, uniform, standard_normal, seed

poly()

numpy.poly(seq_of_zeros)

Return polynomial coefficients given a sequence of roots.

Calculate the coefficients of a polynomial given the zeros
of the polynomial.

If a square matrix is given, then the coefficients for
characteristic equation of the matrix, defined by
:math:`\mathrm{det}(\mathbf{A} - \lambda \mathbf{I})`,
are returned.

Parameters
----------
seq_of_zeros : ndarray
    A sequence of polynomial roots or a square matrix.

Returns
-------
coefs : ndarray
    A sequence of polynomial coefficients representing the polynomial

    :math:`\mathrm{coefs}[0] x^{n-1} + \mathrm{coefs}[1] x^{n-2} +
                  ... + \mathrm{coefs}[2] x + \mathrm{coefs}[n]`

See Also
--------
numpy.poly1d : A one-dimensional polynomial class.
numpy.roots : Return the roots of the polynomial coefficients in p
numpy.polyfit : Least squares polynomial fit

Examples
--------
Given a sequence of polynomial zeros,

>>> b = np.roots([1, 3, 1, 5, 6])
>>> np.poly(b)
array([ 1.,  3.,  1.,  5.,  6.])

Given a square matrix,

>>> P = np.array([[19, 3], [-2, 26]])
>>> np.poly(P)
array([   1.,  -45.,  500.])

poly1d()

numpy.poly1d(...)

A one-dimensional polynomial class.

Parameters
----------
c_or_r : array_like
    Polynomial coefficients, in decreasing powers.  For example,
    ``(1, 2, 3)`` implies :math:`x^2 + 2x + 3`.  If `r` is set
    to True, these coefficients specify the polynomial roots
    (values where the polynomial evaluate to 0) instead.
r : bool, optional
    If True, `c_or_r` gives the polynomial roots.  Default is False.

Examples
--------
Construct the polynomial :math:`x^2 + 2x + 3`:

>>> p = np.poly1d([1, 2, 3])
>>> print np.poly1d(p)
   2
1 x + 2 x + 3

Evaluate the polynomial:

>>> p(0.5)
4.25

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])

Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial
(which is equivalent to ``p.c[-(i+1)]``):

>>> p[1]
2

Polynomials can be added, substracted, multplied and divided
(returns quotient and remainder):

>>> p * p
poly1d([ 1,  4, 10, 12,  9])

>>> (p**3 + 4) / p
(poly1d([  1.,   4.,  10.,  12.,   9.]), poly1d([4]))

``asarray(p)`` gives the coefficient array, so polynomials can be
used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([ 1,  4, 10, 12,  9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of `p` can be modified,
using the `variable` parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print p
   2
1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([ 1, -3,  2])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([ 1, -3,  2])

>>> from numpy import *
>>> p1 = poly1d([2,3],r=1)                                        # specify polynomial by its roots
>>> print p1
2
1 x - 5 x + 6
>>> p2 = poly1d([2,3],r=0)                                        # specify polynomial by its coefficients
>>> print p2
2 x + 3
>>> print p1+p2                                                   # +,-,*,/ and even ** are supported
2
1 x - 3 x + 9
>>> quotient,remainder = p1/p2                                    # division gives a tupple with the quotient and remainder
>>> print quotient,remainder
0.5 x - 3
15
>>> p3 = p1*p2
>>> print p3
3     2
2 x - 7 x - 3 x + 18
>>> p3([1,2,3,4])                                                 # evaluate the polynomial in the values [1,2,3,4]
array([10,  0,  0, 22])
>>> p3[2]                                                         # the coefficient of x**2
-7
>>> p3.r                                                          # the roots of the polynomial
array([-1.5,  3. ,  2. ])
>>> p3.c                                                          # the coefficients of the polynomial
array([ 2, -7, -3, 18])
>>> p3.o                                                          # the order of the polynomial
3
>>> print p3.deriv(m=2)                                           # the 2nd derivative of the polynomial
12 x - 14
>>> print p3.integ(m=2,k=[1,2])                                   # integrate polynomial twice and use [1,2] as integration constants
5          4       3     2
0.1 x - 0.5833 x - 0.5 x + 9 x + 1 x + 2

polyadd()

numpy.polyadd(a1, a2)

Returns sum of two polynomials.

Returns sum of polynomials; `a1` + `a2`.  Input polynomials are
represented as an array_like sequence of terms or a poly1d object.

Parameters
----------
a1 : {array_like, poly1d}
    Polynomial as sequence of terms.
a2 : {array_like, poly1d}
    Polynomial as sequence of terms.

Returns
-------
out : {ndarray, poly1d}
    Array representing the polynomial terms.

See Also
--------
polyval, polydiv, polymul, polyadd

polyder()

numpy.polyder(p, m=1)

Return the derivative of the specified order of a polynomial.

Parameters
----------
p : poly1d or sequence
    Polynomial to differentiate.
    A sequence is interpreted as polynomial coefficients, see `poly1d`.
m : int, optional
    Order of differentiation (default: 1)

Returns
-------
der : poly1d
    A new polynomial representing the derivative.

See Also
--------
polyint : Anti-derivative of a polynomial.
poly1d : Class for one-dimensional polynomials.

Examples
--------
The derivative of the polynomial :math:`x^3 + x^2 + x^1 + 1` is:

>>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])

which evaluates to:

>>> p2(2.)
17.0

We can verify this, approximating the derivative with
``(f(x + h) - f(x))/h``:

>>> (p(2. + 0.001) - p(2.)) / 0.001
17.007000999997857

The fourth-order derivative of a 3rd-order polynomial is zero:

>>> np.polyder(p, 2)
poly1d([6, 2])
>>> np.polyder(p, 3)
poly1d([6])
>>> np.polyder(p, 4)
poly1d([ 0.])

polydiv()

numpy.polydiv(u, v)

Returns the quotient and remainder of polynomial division.

The input arrays specify the polynomial terms in turn with a length equal
to the polynomial degree plus 1.

Parameters
----------
u : {array_like, poly1d}
    Dividend polynomial.
v : {array_like, poly1d}
    Divisor polynomial.

Returns
-------
q : ndarray
    Polynomial terms of quotient.
r : ndarray
    Remainder of polynomial division.

See Also
--------
poly, polyadd, polyder, polydiv, polyfit, polyint, polymul, polysub,
polyval

Examples
--------
.. math:: \frac{3x^2 + 5x + 2}{2x + 1} = 1.5x + 1.75, remainder 0.25

>>> x = np.array([3.0, 5.0, 2.0])
>>> y = np.array([2.0, 1.0])
>>> np.polydiv(x, y)
>>> (array([ 1.5 ,  1.75]), array([ 0.25]))

polyfit()

numpy.polyfit(x, y, deg, rcond=None, full=False)

Least squares polynomial fit.

Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg`
to points `(x, y)`. Returns a vector of coefficients `p` that minimises
the squared error.

Parameters
----------
x : array_like, shape (M,)
    x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
    y-coordinates of the sample points. Several data sets of sample
    points sharing the same x-coordinates can be fitted at once by
    passing in a 2D-array that contains one dataset per column.
deg : int
    Degree of the fitting polynomial
rcond : float, optional
    Relative condition number of the fit. Singular values smaller than this
    relative to the largest singular value will be ignored. The default
    value is len(x)*eps, where eps is the relative precision of the float
    type, about 2e-16 in most cases.
full : bool, optional
    Switch determining nature of return value. When it is
    False (the default) just the coefficients are returned, when True
    diagnostic information from the singular value decomposition is also
    returned.

Returns
-------
p : ndarray, shape (M,) or (M, K)
    Polynomial coefficients, highest power first.
    If `y` was 2-D, the coefficients for `k`-th data set are in ``p[:,k]``.

residuals, rank, singular_values, rcond : present only if `full` = True
    Residuals of the least-squares fit, the effective rank of the scaled
    Vandermonde coefficient matrix, its singular values, and the specified
    value of `rcond`. For more details, see `linalg.lstsq`.

Warns
-----
RankWarning
    The rank of the coefficient matrix in the least-squares fit is
    deficient. The warning is only raised if `full` = False.

    The warnings can be turned off by

    >>> import warnings
    >>> warnings.simplefilter('ignore', np.RankWarning)

See Also
--------
polyval : Computes polynomial values.
linalg.lstsq : Computes a least-squares fit.
scipy.interpolate.UnivariateSpline : Computes spline fits.

Notes
-----
The solution minimizes the squared error

.. math ::
    E = \sum_{j=0}^k |p(x_j) - y_j|^2

in the equations::

    x[0]**n * p[n] + ... + x[0] * p[1] + p[0] = y[0]
    x[1]**n * p[n] + ... + x[1] * p[1] + p[0] = y[1]
    ...
    x[k]**n * p[n] + ... + x[k] * p[1] + p[0] = y[k]

The coefficient matrix of the coefficients `p` is a Vandermonde matrix.

`polyfit` issues a `RankWarning` when the least-squares fit is badly
conditioned. This implies that the best fit is not well-defined due
to numerical error. The results may be improved by lowering the polynomial
degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter
can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular
values can add numerical noise to the result.

Note that fitting polynomial coefficients is inherently badly conditioned
when the degree of the polynomial is large or the interval of sample points
is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good
alternative.

References
----------
.. [1] Wikipedia, "Curve fitting",
       http://en.wikipedia.org/wiki/Curve_fitting
.. [2] Wikipedia, "Polynomial interpolation",
       http://en.wikipedia.org/wiki/Polynomial_interpolation

Examples
--------
>>> x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254])

It is convenient to use `poly1d` objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179
>>> p(3.5)
-0.34732142857143039
>>> p(10)
22.579365079365115

High-order polynomials may oscillate wildly:

>>> p30 = np.poly1d(np.polyfit(x, y, 30))
/... RankWarning: Polyfit may be poorly conditioned...
>>> p30(4)
-0.80000000000000204
>>> p30(5)
-0.99999999999999445
>>> p30(4.5)
-0.10547061179440398

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
>>> plt.show()

>>> from numpy import *
>>> x = array([1,2,3,4,5])
>>> y = array([6, 11, 18, 27, 38])
>>> polyfit(x,y,2)                                   # fit a 2nd degree polynomial to the data, result is x**2 + 2x + 3
array([ 1.,  2.,  3.])
>>> polyfit(x,y,1)                                   # fit a 1st degree polynomial (straight line), result is 8x-4
array([ 8., -4.])

See also: lstsq

polyint()

numpy.polyint(p, m=1, k=None)

Return an antiderivative (indefinite integral) of a polynomial.

The returned order `m` antiderivative `P` of polynomial `p` satisfies
:math:`\frac{d^m}{dx^m}P(x) = p(x)` and is defined up to `m - 1`
integration constants `k`. The constants determine the low-order
polynomial part

.. math:: \frac{k_{m-1}}{0!} x^0 + \ldots + \frac{k_0}{(m-1)!}x^{m-1}

of `P` so that :math:`P^{(j)}(0) = k_{m-j-1}`.

Parameters
----------
p : {array_like, poly1d}
    Polynomial to differentiate.
    A sequence is interpreted as polynomial coefficients, see `poly1d`.
m : int, optional
    Order of the antiderivative. (Default: 1)
k : {None, list of `m` scalars, scalar}, optional
    Integration constants. They are given in the order of integration:
    those corresponding to highest-order terms come first.

    If ``None`` (default), all constants are assumed to be zero.
    If `m = 1`, a single scalar can be given instead of a list.

See Also
--------
polyder : derivative of a polynomial
poly1d.integ : equivalent method

Examples
--------
The defining property of the antiderivative:

>>> p = np.poly1d([1,1,1])
>>> P = np.polyint(p)
poly1d([ 0.33333333,  0.5       ,  1.        ,  0.        ])
>>> np.polyder(P) == p
True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3)
>>> P(0)
0.0
>>> np.polyder(P)(0)
0.0
>>> np.polyder(P, 2)(0)
0.0
>>> P = np.polyint(p, 3, k=[6,5,3])
>>> P
poly1d([ 0.01666667,  0.04166667,  0.16666667,  3.,  5.,  3. ])

Note that 3 = 6 / 2!, and that the constants are given in the order of
integrations. Constant of the highest-order polynomial term comes first:

>>> np.polyder(P, 2)(0)
6.0
>>> np.polyder(P, 1)(0)
5.0
>>> P(0)
3.0

polymul()

numpy.polymul(a1, a2)

Returns product of two polynomials represented as sequences.

The input arrays specify the polynomial terms in turn with a length equal
to the polynomial degree plus 1.

Parameters
----------
a1 : {array_like, poly1d}
    First multiplier polynomial.
a2 : {array_like, poly1d}
    Second multiplier polynomial.

Returns
-------
out : {ndarray, poly1d}
    Product of inputs.

See Also
--------
poly, polyadd, polyder, polydiv, polyfit, polyint, polysub,
polyval

polysub()

numpy.polysub(a1, a2)

Returns difference from subtraction of two polynomials input as sequences.

Returns difference of polynomials; `a1` - `a2`.  Input polynomials are
represented as an array_like sequence of terms or a poly1d object.

Parameters
----------
a1 : {array_like, poly1d}
    Minuend polynomial as sequence of terms.
a2 : {array_like, poly1d}
    Subtrahend polynomial as sequence of terms.

Returns
-------
out : {ndarray, poly1d}
    Array representing the polynomial terms.

See Also
--------
polyval, polydiv, polymul, polyadd

Examples
--------
.. math:: (2 x^2 + 10x - 2) - (3 x^2 + 10x -4) = (-x^2 + 2)

>>> np.polysub([2, 10, -2], [3, 10, -4])
array([-1,  0,  2])

polyval()

numpy.polyval(p, x)

Evaluate a polynomial at specific values.

If p is of length N, this function returns the value:

    p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]

If x is a sequence then p(x) will be returned for all elements of x.
If x is another polynomial then the composite polynomial p(x) will
be returned.

Parameters
----------
p : {array_like, poly1d}
   1D array of polynomial coefficients from highest degree to zero or an
   instance of poly1d.
x : {array_like, poly1d}
   A number, a 1D array of numbers, or an instance of poly1d.

Returns
-------
values : {ndarray, poly1d}
   If either p or x is an instance of poly1d, then an instance of poly1d
   is returned, otherwise a 1D array is returned. In the case where x is
   a poly1d, the result is the composition of the two polynomials, i.e.,
   substitution is used.

See Also
--------
poly1d: A polynomial class.

Notes
-----
Horner's method is used to evaluate the polynomial. Even so, for
polynomials of high degree the values may be inaccurate due to
rounding errors. Use carefully.


Examples
--------
>>> np.polyval([3,0,1], 5)  # 3 * 5**2 + 0 * 5**1 + 1
76

power()

numpy.power(...)

y = power(x1,x2)

Returns element-wise base array raised to power from second array.

Raise each base in `x1` to the power of the exponents in `x2`. This
requires that `x1` and `x2` must be broadcastable to the same shape.

Parameters
----------
x1 : array_like
    The bases.
x2 : array_like
    The exponents.

Returns
-------
y : ndarray
    The bases in `x1` raised to the exponents in `x2`.

Examples
--------
Cube each element in a list.

>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([  0,   1,   8,  27,  64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([  0.,   1.,   8.,  27.,  16.,   5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
       [1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[ 0,  1,  8, 27, 16,  5],
       [ 0,  1,  8, 27, 16,  5]])

ppmt()

numpy.ppmt(rate, per, nper, pv, fv=0.0, when='end')

Not implemented. Compute the payment against loan principal.

Parameters
----------
rate : array_like
    Rate of interest (per period)
per : array_like, int
    Amount paid against the loan changes.  The `per` is the period of
    interest.
nper : array_like
    Number of compounding periods
pv : array_like
    Present value
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
    When payments are due ('begin' (1) or 'end' (0))

See Also
--------
pmt, pv, ipmt

prod()

numpy.prod(a, axis=None, dtype=None, out=None)

Return the product of array elements over a given axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis over which the product is taken.  By default, the product
    of all elements is calculated.
dtype : data-type, optional
    The data-type of the returned array, as well as of the accumulator
    in which the elements are multiplied.  By default, if `a` is of
    integer type, `dtype` is the default platform integer. (Note: if
    the type of `a` is unsigned, then so is `dtype`.)  Otherwise,
    the dtype is the same as that of `a`.
out : ndarray, optional
    Alternative output array in which to place the result. It must have
    the same shape as the expected output, but the type of the
    output values will be cast if necessary.

Returns
-------
product_along_axis : ndarray, see `dtype` parameter above.
    An array shaped as `a` but with the specified axis removed.
    Returns a reference to `out` if specified.

See Also
--------
ndarray.prod : equivalent method

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.  That means that, on a 32-bit platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) #random
16

Examples
--------
By default, calculate the product of all elements:

>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.]])
24.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([  2.,  12.])

If the type of `x` is unsigned, then the output type is
the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint

If `x` is of a signed integer type, then the output type
is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == np.int

ndarray.prod(...)

a.prod(axis=None, dtype=None, out=None)

Return the product of the array elements over the given axis

Refer to `numpy.prod` for full documentation.

See Also
--------
numpy.prod : equivalent function

>>> from numpy import *
>>> a = array([1,2,3])
>>> a.prod()                                # 1 * 2 * 3 = 6
6
>>> prod(a)                                 # also exists
6
>>> a = array([[1,2,3],[4,5,6]])
>>> a.prod(dtype=float)                     # specify type of output
720.0
>>> a.prod(axis=0)                          # for each of the 3 columns: product
array([ 4, 10, 18])
>>> a.prod(axis=1)                          # for each of the two rows: product
array([  6, 120])

See also: cumprod, sum

product()

numpy.product(a, axis=None, dtype=None, out=None)

Return the product of array elements over a given axis.

See Also
--------
prod : equivalent function; see for details.

ptp()

numpy.ptp(a, axis=None, out=None)

Range of values (maximum - minimum) along an axis.

The name of the function comes from the acronym for 'peak to peak'.

Parameters
----------
a : array_like
    Input values.
axis : int, optional
    Axis along which to find the peaks.  By default, flatten the
    array.
out : array_like
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output,
    but the type of the output values will be cast if necessary.

Returns
-------
ptp : ndarray
    A new array holding the result, unless `out` was
    specified, in which case a reference to `out` is returned.

Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
       [2, 3]])

>>> np.ptp(x, axis=0)
array([2, 2])

>>> np.ptp(x, axis=1)
array([1, 1])

ndarray.ptp(...)

a.ptp(axis=None, out=None)

Peak to peak (maximum - minimum) value along a given axis.

Refer to `numpy.ptp` for full documentation.

See Also
--------
numpy.ptp : equivalent function

>>> from numpy import *
>>> a = array([5,15,25])
>>> a.ptp()                                 # peak-to-peak = maximum - minimum
20
>>> a = array([[5,15,25],[3,13,33]])
>>> a.ptp()
30
>>> a.ptp(axis=0)                           # peak-to-peak value for each of the 3 columns
array([2, 2, 8])
>>> a.ptp(axis=1)                           # peak-to-peak value for each of the 2 rows
array([20, 30])

See also: max, min

put()

numpy.put(a, ind, v, mode='raise')

Changes specific elements of one array by replacing from another array.

Set `a`.flat[n] = `v`\[n] for all n in `ind`.  If `v` is shorter than
`ind`, it will repeat which is different than `a[ind]` = `v`.

Parameters
----------
a : array_like (contiguous)
    Target array.
ind : array_like
    Target indices, interpreted as integers.
v : array_like
    Values to place in `a` at target indices.
mode : {'raise', 'wrap', 'clip'}, optional
    Specifies how out-of-bounds indices will behave.

* 'raise' -- raise an error
* 'wrap' -- wrap around
* 'clip' -- clip to the range

Notes
-----
If `v` is shorter than `mask` it will be repeated as necessary.  In
particular `v` can be a scalar or length 1 array.  The routine put
is the equivalent of the following (although the loop is in C for
speed):
::

    ind = array(indices, copy=False)
    v = array(values, copy=False).astype(a.dtype)
    for i in ind: a.flat[i] = v[i]

Examples
--------
>>> x = np.arange(5)
>>> np.put(x,[0,2,4],[-1,-2,-3])
>>> print x
[-1  1 -2  3 -3]

ndarray.put(...)

a.put(indices, values, mode='raise')

Set a.flat[n] = values[n] for all n in indices.

Refer to `numpy.put` for full documentation.

See Also
--------
numpy.put : equivalent function

>>> from nump import *
>>> a = array([10,20,30,40])
>>> a.put([60,70,80], [0,3,2])            # first values, then indices
>>> a
array([60, 20, 80, 70])
>>> a[[0,3,2]] = [60,70,80]               # same effect
>>> a.put([40,50], [0,3,2,1])             # if value array is too short, it is repeated
>>> a
array([40, 50, 40, 50])
>>> put(a, [0,3], [90])                   # also exists, but here FIRST indices, THEN values
>>> a
array([90, 50, 40, 90])

See also: putmask, take

putmask()

numpy.putmask(...)

putmask(a, mask, values)

Changes elements of an array based on conditional and input values.

Sets `a`.flat[n] = `values`\[n] for each n where `mask`.flat[n] is true.

If `values` is not the same size as `a` and `mask` then it will repeat.
This gives behavior different from `a[mask] = values`.

Parameters
----------
a : array_like
    Array to put data into
mask : array_like
    Boolean mask array
values : array_like
    Values to put

See Also
--------
place, put, take

Examples
--------
>>> a = np.array([10,20,30,40])
>>> mask = np.array([True,False,True,True])
>>> a.putmask([60,70,80,90], mask)
>>> a
array([60, 20, 80, 90])
>>> a = np.array([10,20,30,40])
>>> a[mask]
array([60, 80, 90])
>>> a[mask] = np.array([60,70,80,90])
>>> a
array([60, 20, 70, 80])
>>> a.putmask([10,90], mask)
>>> a
array([10, 20, 10, 90])
>>> np.putmask(a, mask, [60,70,80,90])

>>> from nump import *
>>> a = array([10,20,30,40])
>>> mask = array([True,False,True,True])          # size mask = size a
>>> a.putmask([60,70,80,90], mask)                # first values, then the mask
>>> a
array([60, 20, 80, 90])
>>> a = array([10,20,30,40])
>>> a[mask]                                       # reference
array([60, 80, 90])
>>> a[mask] = array([60,70,80,90])                # NOT exactly the same as putmask
>>> a
array([60, 20, 70, 80])
>>> a.putmask([10,90], mask)                      # if value array is too short, it is repeated
>>> a
array([10, 20, 10, 90])
>>> putmask(a, mask, [60,70,80,90])               # also exists, but here FIRST mask, THEN values

See also: put, take

pv()

numpy.pv(rate, nper, pmt, fv=0.0, when='end')

Compute the present value.

Parameters
----------
rate : array_like
    Rate of interest (per period)
nper : array_like
    Number of compounding periods
pmt : array_like
    Payment
fv : array_like, optional
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))

Returns
-------
out : ndarray, float
    Present value of a series of payments or investments.

Notes
-----
The present value ``pv`` is computed by solving the equation::

 fv +
 pv*(1 + rate)**nper +
 pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

or, when ``rate = 0``::

 fv + pv + pmt * nper = 0

r_

numpy.r_

Translates slice objects to concatenation along the first axis.

For example:
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, 0, 0, 4, 5, 6])

>>> from numpy import *
>>> r_[1:5]                                    # same as arange(1,5)
array([1, 2, 3, 4])
>>> r_[1:10:4]                                 # same as arange(1,10,4)
array([1, 5, 9])
>>> r_[1:10:4j]                                # same as linspace(1,10,4), 4 equally-spaced elements between 1 and 10 inclusive
array([  1.,   4.,   7.,  10.])
>>> r_[1:5,7,1:10:4]                           # sequences separated with commas are concatenated
array([1, 2, 3, 4, 7, 1, 5, 9])
>>> r_['r', 1:3]                               # return a matrix. If 1-d, result is a 1xN matrix
matrix([[1, 2]])
>>> r_['c',1:3]                                # return a matrix. If 1-d, result is a Nx1 matrix
matrix([[1],
[2]])
>>> a = array([[1,2,3],[4,5,6]])
>>> r_[a,a]                                    # concatenation along 1st (default) axis (row-wise, that's why it's called r_)
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> r_['-1',a,a]                               # concatenation along last axis, same as c_[a,a]
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])

See also: c_, s_, arange, linspace, hstack, vstack, column_stack, concatenate, bmat

radians()

numpy.radians(...)

y = radians(x)

Convert angles from degrees to radians.

Parameters
----------
x : array_like
  Angles in degrees.

Returns
-------
y : ndarray
  The corresponding angle in radians.

See Also
--------
degrees : Convert angles from radians to degrees.
unwrap : Remove large jumps in angle by wrapping.

Notes
-----
``radians(x)`` is ``x * pi / 180``.

Examples
--------
>>> np.radians(180)
3.1415926535897931

randint()

numpy.random.randint(...)

randint(low, high=None, size=None)

Return random integers x such that low <= x < high.

If high is None, then 0 <= x < low.

Synonym for random_integers()

See random_integers

random_integers()

numpy.random.random_integers(...)

random_integers(low, high=None, size=None)

Return random integers x such that low <= x <= high.

If high is None, then 1 <= x <= low.

>>> from numpy import *
>>> from numpy.random import *
>>> random_integers(-1,5,(2,2))
array([[ 3, -1],
[-1,  0]])

See also: random_sample, uniform, poisson, seed

random_sample()

numpy.random.random_sample(...)

random_sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).

>>> from numpy import *
>>> from numpy.random import *
>>> random_sample((3,2))
array([[ 0.76228008,  0.00210605],
[ 0.44538719,  0.72154003],
[ 0.22876222,  0.9452707 ]])

See also: ranf, sample, rand, seed

ranf()

numpy.random.ranf(...)

random_sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).

Synonym for random_sample

See random_sample, sample

rank()

numpy.rank(a)

Return the number of dimensions of an array.

If `a` is not already an array, a conversion is attempted.
Scalars are zero dimensional.

Parameters
----------
a : array_like
    Array whose number of dimensions is desired. If `a` is not an array,
    a conversion is attempted.

Returns
-------
number_of_dimensions : int
    The number of dimensions in the array.

See Also
--------
ndim : equivalent function
ndarray.ndim : equivalent property
shape : dimensions of array
ndarray.shape : dimensions of array

Notes
-----
In the old Numeric package, `rank` was the term used for the number of
dimensions, but in Numpy `ndim` is used instead.

Examples
--------
>>> np.rank([1,2,3])
1
>>> np.rank(np.array([[1,2,3],[4,5,6]]))
2
>>> np.rank(1)
0

rate()

numpy.rate(nper, pmt, pv, fv, when='end', guess=0.10000000000000001, tol=9.9999999999999995e-007, maxiter=100)

Compute the rate of interest per period.

Parameters
----------
nper : array_like
    Number of compounding periods
pmt : array_like
    Payment
pv : array_like
    Present value
fv : array_like
    Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
    When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
    Starting guess for solving the rate of interest
tol : float, optional
    Required tolerance for the solution
maxiter : int, optional
    Maximum iterations in finding the solution

Notes
-----
The rate of interest ``rate`` is computed by solving the equation::

 fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

or, if ``rate = 0``::

 fv + pv + pmt * nper = 0

ravel()

numpy.ravel(a, order='C')

Return a flattened array.

A 1-d array, containing the elements of the input, is returned.  A copy is
made only if needed.

Parameters
----------
a : array_like
    Input array.  The elements in `a` are read in the order specified by
    `order`, and packed as a 1-dimensional array.
order : {'C','F'}, optional
    The elements of `a` are read in this order.  It can be either
    'C' for row-major order, or `F` for column-major order.
    By default, row-major order is used.

Returns
-------
1d_array : ndarray
    Output of the same dtype as `a`, and of shape ``(a.size(),)`` (or
    ``(np.prod(a.shape),)``).

See Also
--------
ndarray.flat : 1-D iterator over an array.
ndarray.flatten : 1-D array copy of the elements of an array
                  in row-major order.

Notes
-----
In row-major order, the row index varies the slowest, and the column
index the quickest.  This can be generalised to multiple dimensions,
where row-major order implies that the index along the first axis
varies slowest, and the index along the last quickest.  The opposite holds
for Fortran-, or column-major, mode.

Examples
--------
If an array is in C-order (default), then `ravel` is equivalent
to ``reshape(-1)``:

>>> x = np.array([[1, 2, 3], [4, 5, 6]])
>>> print x.reshape(-1)
[1  2  3  4  5  6]

>>> print np.ravel(x)
[1  2  3  4  5  6]

When flattening using Fortran-order, however, we see

>>> print np.ravel(x, order='F')
[1 4 2 5 3 6]

ndarray.ravel(...)

a.ravel([order])

Return a flattened array.

Refer to `numpy.ravel` for full documentation.

See Also
--------
numpy.ravel : equivalent function

>>> from numpy import *
>>> a = array([[1,2],[3,4]])
>>> a.ravel()                               # 1-d version of a
array([1, 2, 3, 4])
>>> b = a[:,0].ravel()                      # a[:,0] does not occupy a single memory segment, thus b is a copy, not a reference
>>> b
array([1, 3])
>>> c = a[0,:].ravel()                     # a[0,:] occupies a single memory segment, thus c is a reference, not a copy
>>> c
array([1, 2])
>>> b[0] = -1
>>> c[1] = -2
>>> a
array([[ 1, -2],
[ 3,  4]])
>>> ravel(a)                             # also exists

See also: flatten

real() or .real

numpy.real(val)

Return the real part of the elements of the array.

Parameters
----------
val : array_like
    Input array.

Returns
-------
out : ndarray
    If `val` is real, the type of `val` is used for the output.  If `val`
    has complex elements, the returned type is float.

See Also
--------
real_if_close, imag, angle

Examples
--------
>>> a = np.array([1+2j,3+4j,5+6j])
>>> a.real
array([ 1.,  3.,  5.])
>>> a.real = 9
>>> a
array([ 9.+2.j,  9.+4.j,  9.+6.j])
>>> a.real = np.array([9,8,7])
>>> a
array([ 9.+2.j,  8.+4.j,  7.+6.j])

ndarray.real

The real part of the array.

Examples
--------
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([ 1.        ,  0.70710678])
>>> x.real.dtype
dtype('float64')

>>> from numpy import *
>>> a = array([1+2j,3+4j,5+6j])
>>> a.real
array([ 1.,  3.,  5.])
>>> a.real = 9
>>> a
array([ 9.+2.j,  9.+4.j,  9.+6.j])
>>> a.real = array([9,8,7])
>>> a
array([ 9.+2.j,  8.+4.j,  7.+6.j])

See also: imag, angle

real_if_close()

numpy.real_if_close(a, tol=100)

If complex input returns a real array if complex parts are close to zero.

"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).

Parameters
----------
a : array_like
    Input array.
tol : scalar
    Tolerance for the complex part of the elements in the array.

Returns
-------
out : ndarray
    If `a` is real, the type of `a` is used for the output.  If `a`
    has complex elements, the returned type is float.

See Also
--------
real, imag, angle

Notes
-----
Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16.  You can use 'np.finfo(np.float).eps' to print
out the machine epsilon for floats.

Examples
--------
>>> np.finfo(np.float).eps      # DOCTEST +skip
2.2204460492503131e-16

>>> np.real_if_close([2.1 + 4e-14j], tol = 1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol = 1000)
array([ 2.1 +4.00000000e-13j])

recarray()

numpy.recarray(...)

Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analagous
to columns in a spread sheet.  An example is ``[(x, int), (y, float)]``,
where each entry in the array is a pair of ``(int, float)``.  Normally,
these attributes are accessed using dictionary lookups such as ``arr['x']``
and ``arr['y']``.  Record arrays allow the fields to be accessed as members
of the array, using ``arr.x`` and ``arr.y``.

Parameters
----------
shape : tuple
    Shape of output array.
dtype : data-type, optional
    The desired data-type.  By default, the data-type is determined
    from `formats`, `names`, `titles`, `aligned` and `byteorder`.
formats : list of data-types, optional
    A list containing the data-types for the different columns, e.g.
    ``['i4', 'f8', 'i4']``.  `formats` does *not* support the new
    convention of using types directly, i.e. ``(int, float, int)``.
    Note that `formats` must be a list, not a tuple.
    Given that `formats` is somewhat limited, we recommend specifying
    `dtype` instead.
names : tuple of strings, optional
    The name of each column, e.g. ``('x', 'y', 'z')``.
buf : buffer, optional
    By default, a new array is created of the given shape and data-type.
    If `buf` is specified and is an object exposing the buffer interface,
    the array will use the memory from the existing buffer.  In this case,
    the `offset` and `strides` keywords are available.

Other Parameters
----------------
titles : tuple of strings, optional
    Aliases for column names.  For example, if `names` were
    ``('x', 'y', 'z')`` and `titles` is
    ``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
    ``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
byteorder : {'<', '>', '='}, optional
    Byte-order for all fields.
aligned : {True, False}, optional
    Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional
    Buffer (`buf`) is interpreted according to these strides (strides
    define how many bytes each array element, row, column, etc.
    occupy in memory).
offset : int, optional
    Start reading buffer (`buf`) from this offset onwards.

Returns
-------
rec : recarray
    Empty array of the given shape and type.

See Also
--------
rec.fromrecords : Construct a record array from data.
record : fundamental data-type for recarray
format_parser : determine a data-type from formats, names, titles

Notes
-----
This constructor can be compared to ``empty``: it creates a new record
array but does not fill it with data.  To create a reccord array from data,
use one of the following methods:

1. Create a standard ndarray and convert it to a record array,
   using ``arr.view(np.recarray)``
2. Use the `buf` keyword.
3. Use `np.rec.fromrecords`.

Examples
--------
Create an array with two fields, ``x`` and ``y``:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],
      dtype=[('x', '<f8'), ('y', '<i4')])

>>> x['x']
array([ 1.,  3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([ 1.,  3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
       (3471280, 1.2134086255804012e-316, 0)],
      dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

numpy.core.records.recarray(...)

Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analagous
to columns in a spread sheet.  An example is ``[(x, int), (y, float)]``,
where each entry in the array is a pair of ``(int, float)``.  Normally,
these attributes are accessed using dictionary lookups such as ``arr['x']``
and ``arr['y']``.  Record arrays allow the fields to be accessed as members
of the array, using ``arr.x`` and ``arr.y``.

Parameters
----------
shape : tuple
    Shape of output array.
dtype : data-type, optional
    The desired data-type.  By default, the data-type is determined
    from `formats`, `names`, `titles`, `aligned` and `byteorder`.
formats : list of data-types, optional
    A list containing the data-types for the different columns, e.g.
    ``['i4', 'f8', 'i4']``.  `formats` does *not* support the new
    convention of using types directly, i.e. ``(int, float, int)``.
    Note that `formats` must be a list, not a tuple.
    Given that `formats` is somewhat limited, we recommend specifying
    `dtype` instead.
names : tuple of strings, optional
    The name of each column, e.g. ``('x', 'y', 'z')``.
buf : buffer, optional
    By default, a new array is created of the given shape and data-type.
    If `buf` is specified and is an object exposing the buffer interface,
    the array will use the memory from the existing buffer.  In this case,
    the `offset` and `strides` keywords are available.

Other Parameters
----------------
titles : tuple of strings, optional
    Aliases for column names.  For example, if `names` were
    ``('x', 'y', 'z')`` and `titles` is
    ``('x_coordinate', 'y_coordinate', 'z_coordinate')``, then
    ``arr['x']`` is equivalent to both ``arr.x`` and ``arr.x_coordinate``.
byteorder : {'<', '>', '='}, optional
    Byte-order for all fields.
aligned : {True, False}, optional
    Align the fields in memory as the C-compiler would.
strides : tuple of ints, optional
    Buffer (`buf`) is interpreted according to these strides (strides
    define how many bytes each array element, row, column, etc.
    occupy in memory).
offset : int, optional
    Start reading buffer (`buf`) from this offset onwards.

Returns
-------
rec : recarray
    Empty array of the given shape and type.

See Also
--------
rec.fromrecords : Construct a record array from data.
record : fundamental data-type for recarray
format_parser : determine a data-type from formats, names, titles

Notes
-----
This constructor can be compared to ``empty``: it creates a new record
array but does not fill it with data.  To create a reccord array from data,
use one of the following methods:

1. Create a standard ndarray and convert it to a record array,
   using ``arr.view(np.recarray)``
2. Use the `buf` keyword.
3. Use `np.rec.fromrecords`.

Examples
--------
Create an array with two fields, ``x`` and ``y``:

>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],
      dtype=[('x', '<f8'), ('y', '<i4')])

>>> x['x']
array([ 1.,  3.])

View the array as a record array:

>>> x = x.view(np.recarray)

>>> x.x
array([ 1.,  3.])

>>> x.y
array([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)]) #doctest: +SKIP
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
       (3471280, 1.2134086255804012e-316, 0)],
      dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])

>>> from numpy import *
>>> num = 2
>>> a = recarray(num, formats='i4,f8,f8',names='id,x,y')
>>> a['id'] = [3,4]
>>> a['id']
array([3, 4])
>>> a = rec.fromrecords([(35,1.2,7.3),(85,9.3,3.2)], names='id,x,y')       # fromrecords is in the numpy.rec submodule
>>> a['id']
array([35, 85])

See also: array, dtype

reciprocal()

numpy.reciprocal(...)

y = reciprocal(x)

Return element-wise reciprocal.

Parameters
----------
x : array_like
    Input value.

Returns
-------
y : ndarray
    Return value.

Examples
--------
>>> reciprocal(2.)
0.5
>>> reciprocal([1, 2., 3.33])
array([ 1.       ,  0.5      ,  0.3003003])

reduce

>>> from numpy import *
>>> add.reduce(array([1.,2.,3.,4.]))                    # computes ((((1.)+2.)+3.)+4.)
10.0
>>> multiply.reduce(array([1.,2.,3.,4.]))               # works also with other operands. Computes ((((1.)*2.)*3.)*4.)
24.0
>>> add.reduce(array([[1,2,3],[4,5,6]]), axis = 0)      # reduce every column separately
array([5, 7, 9])
>>> add.reduce(array([[1,2,3],[4,5,6]]), axis = 1)      # reduce every row separately
array([ 6, 15])

See also: accumulate, sum, prod

remainder()

numpy.remainder(...)

y = remainder(x1,x2)

Returns element-wise remainder of division.

Computes `x1 - floor(x1/x2)*x2`.

Parameters
----------
x1 : array_like
    Dividend array.
x2 : array_like
    Divisor array.

Returns
-------
y : ndarray
    The remainder of the quotient `x1/x2`, element-wise. Returns a scalar
    if both  `x1` and `x2` are scalars.

See Also
--------
divide
floor

Notes
-----
Returns 0 when `x2` is 0.

Examples
--------
>>> np.remainder([4,7],[2,3])
array([0, 1])

repeat()

numpy.repeat(a, repeats, axis=None)

Repeat elements of an array.

Parameters
----------
a : array_like
    Input array.
repeats : {int, array of ints}
    The number of repetitions for each element.  `repeats` is broadcasted
    to fit the shape of the given axis.
axis : int, optional
    The axis along which to repeat values.  By default, use the
    flattened input array, and return a flat output array.

Returns
-------
repeated_array : ndarray
    Output array which has the same shape as `a`, except along
    the given axis.

See Also
--------
tile : Tile an array.

Examples
--------
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
       [3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0)
array([[1, 2],
       [3, 4],
       [3, 4]])

ndarray.repeat(...)

a.repeat(repeats, axis=None)

Repeat elements of an array.

Refer to `numpy.repeat` for full documentation.

See Also
--------
numpy.repeat : equivalent function

>>> from numpy import *
>>> repeat(7., 4)
array([ 7.,  7.,  7.,  7.])
>>> a = array([10,20])
>>> a.repeat([3,2])
array([10, 10, 10, 20, 20])
>>> repeat(a, [3,2])                            # also exists
>>> a = array([[10,20],[30,40]])
>>> a.repeat([3,2,1,1])
array([10, 10, 10, 20, 20, 30, 40])
>>> a.repeat([3,2],axis=0)
array([[10, 20],
[10, 20],
[10, 20],
[30, 40],
[30, 40]])
>>> a.repeat([3,2],axis=1)
array([[10, 10, 10, 20, 20],
[30, 30, 30, 40, 40]])

See also: tile

require()

numpy.require(a, dtype=None, requirements=None)

Return an ndarray of the provided type that satisfies requirements.

This function is useful to be sure that an array with the correct flags
is returned for passing to compiled code (perhaps through ctypes).

Parameters
----------
a : array_like
   The object to be converted to a type-and-requirement satisfying array
dtype : data-type
   The required data-type (None is the default data-type -- float64)
requirements : list of strings
   The requirements list can be any of the following

   * 'ENSUREARRAY' ('E')  - ensure that  a base-class ndarray
   * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
   * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
   * 'ALIGNED' ('A')      - ensure a data-type aligned array
   * 'WRITEABLE' ('W')    - ensure a writeable array
   * 'OWNDATA' ('O')      - ensure an array that owns its own data

Notes
-----
The returned array will be guaranteed to have the listed requirements
by making a copy if needed.

reshape()

numpy.reshape(a, newshape, order='C')

Gives a new shape to an array without changing its data.

Parameters
----------
a : array_like
    Array to be reshaped.
newshape : {tuple, int}
    The new shape should be compatible with the original shape. If
    an integer, then the result will be a 1-D array of that length.
    One shape dimension can be -1. In this case, the value is inferred
    from the length of the array and remaining dimensions.
order : {'C', 'F'}, optional
    Determines whether the array data should be viewed as in C
    (row-major) order or FORTRAN (column-major) order.

Returns
-------
reshaped_array : ndarray
    This will be a new view object if possible; otherwise, it will
    be a copy.

See Also
--------
ndarray.reshape : Equivalent method.

Examples
--------
>>> a = np.array([[1,2,3], [4,5,6]])
>>> np.reshape(a, 6)
array([1, 2, 3, 4, 5, 6])
>>> np.reshape(a, 6, order='F')
array([1, 4, 2, 5, 3, 6])
>>> np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2
array([[1, 2],
       [3, 4],
       [5, 6]])

ndarray.reshape(...)

a.reshape(shape, order='C')

Returns an array containing the same data with a new shape.

Refer to `numpy.reshape` for full documentation.

See Also
--------
numpy.reshape : equivalent function

>>> from numpy import *
>>> x = arange(12)
>>> x.reshape(3,4)                             # array with 3 rows and 4 columns. 3x4=12. Total number of elements is always the same.
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> x.reshape(3,2,2)                           # 3x2x2 array; 3x2x2 = 12. x itself does _not_ change.
array([[[ 0,  1],
[ 2,  3]],
[[ 4,  5],
[ 6,  7]],
[[ 8,  9],
[10, 11]]])
>>> x.reshape(2,-1)                            # 'missing' -1 value n is calculated so that 2xn=12, so n=6
array([[ 0,  1,  2,  3,  4,  5],
[ 6,  7,  8,  9, 10, 11]])
>>> x.reshape(12)                              # reshape(1,12) is not the same as reshape(12)
array([0,1,2,3,4,5,6,7,8,9,10,11])
>>> reshape(x,(2,6))                           # Separate function reshape() also exists

See also: shape, resize

resize()

numpy.resize(a, new_shape)

Return a new array with the specified shape.

If the new array is larger than the original array, then the new array
is filled with repeated copied of `a`. Note that this behavior is different
from a.resize(new_shape) which fills with zeros instead of repeated
copies of `a`.

Parameters
----------
a : array_like
    Array to be resized.

new_shape : {tuple, int}
    Shape of resized array.

Returns
-------
reshaped_array : ndarray
    The new array is formed from the data in the old array, repeated if
    necessary to fill out the required number of elements.

See Also
--------
ndarray.resize : resize an array in-place.

Examples
--------
>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],
       [0, 1, 2, 3]])

ndarray.resize(...)

a.resize(new_shape, refcheck=True, order=False)

Change shape and size of array in-place.

Parameters
----------
a : ndarray
    Input array.
new_shape : {tuple, int}
    Shape of resized array.
refcheck : bool, optional
    If False, memory referencing will not be checked. Default is True.
order : bool, optional
    <needs an explanation>. Default if False.

Returns
-------
None

Raises
------
ValueError
    If `a` does not own its own data, or references or views to it exist.

Examples
--------
Shrinking an array: array is flattened in C-order, resized, and reshaped:

>>> a = np.array([[0,1],[2,3]])
>>> a.resize((2,1))
>>> a
array([[0],
       [1]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0,1],[2,3]])
>>> b.resize((2,3))
>>> b
array([[0, 1, 2],
       [3, 0, 0]])

Referencing an array prevents resizing:

>>> c = a
>>> a.resize((1,1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

>>> from numpy import *
>>> a = array([1,2,3,4])
>>> a.resize(2,2)                            # changes shape of 'a' itself
>>> print a
[[1 2]
[3 4]]
>>> a.resize(3,2)                            # reallocates memoy of 'a' to change nr of elements, fills excess elements with 0
>>> print a
[[1 2]
[3 4]
[0 0]]
>>> a.resize(2,4)
>>> print a
[[1 2 3 4]
[0 0 0 0]]
>>> a.resize(2,1)                            # throws away elements of 'a' to fit new shape
>>> print a
[[1]
[2]]

But, there is a caveat:

>>> b = array([1,2,3,4])
>>> c = b                                                                            # c is reference to b, it doesn't 'own' its data
>>> c.resize(2,2)                                                                    # no problem, nr of elements doesn't change
>>> c.resize(2,3)                                                                    # doesn't work, c is only a reference
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: cannot resize an array that has been referenced or is referencing
another array in this way.  Use the resize function
>>> b.resize(2,3)                                                                   # doesn't work, b is referenced by another array
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: cannot resize an array that has been referenced or is referencing
another array in this way.  Use the resize function

and it's not always obvious what the reference is:

>>> d = arange(4)
>>> d
array([0, 1, 2, 3])
>>> d.resize(5)                                                                 # doesn't work, but where's the reference?
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: cannot resize an array that has been referenced or is referencing
another array in this way.  Use the resize function
>>> _                                                                           # '_' was a reference to d!
array([0, 1, 2, 3])
>>> d = resize(d, 5)                                                            # this does work, however
>>> d
array([0, 1, 2, 3, 0])

See also: reshape

restoredot()

numpy.restoredot(...)

restoredot() restores dots to defaults.

right_shift()

numpy.right_shift(...)

y = right_shift(x1,x2)

Shift the bits of an integer to the right.

Bits are shifted to the right by removing `x2` bits at the right of `x1`.
Since the internal representation of numbers is in binary format, this
operation is equivalent to dividing `x1` by ``2**x2``.

Parameters
----------
x1 : array_like, int
    Input values.
x2 : array_like, int
    Number of bits to remove at the right of `x1`.

Returns
-------
out : ndarray, int
    Return `x1` with bits shifted `x2` times to the right.

See Also
--------
left_shift : Shift the bits of an integer to the left.
binary_repr : Return the binary representation of the input number
    as a string.

Examples
--------
>>> np.right_shift(10, [1,2,3])
array([5, 2, 1])

rint()

numpy.rint(...)

y = rint(x)

Round elements of the array to the nearest integer.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Output array is same shape and type as `x`.

Examples
--------
>>> a = [-4.1, -3.6, -2.5, 0.1, 2.5, 3.1, 3.9]
>>> np.rint(a)
array([-4., -4., -2.,  0.,  2.,  3.,  4.])

roll()

numpy.roll(a, shift, axis=None)

Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at
the first.

Parameters
----------
a : array_like
    Input array.
shift : int
    The number of places by which elements are shifted.
axis : int, optional
    The axis along which elements are shifted.  By default, the array
    is flattened before shifting, after which the original
    shape is restored.

Returns
-------
res : ndarray
    Output array, with the same shape as `a`.

See Also
--------
rollaxis : Roll the specified axis backwards, until it lies in a
           given position.

Examples
--------
>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],
       [5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],
       [4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],
       [0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],
       [9, 5, 6, 7, 8]])

rollaxis()

numpy.rollaxis(a, axis, start=0)

Roll the specified axis backwards, until it lies in a given position.

Parameters
----------
a : ndarray
    Input array.
axis : int
    The axis to roll backwards.  The positions of the other axes do not
    change relative to one another.
start : int, optional
    The axis is rolled until it lies before this position.

Returns
-------
res : ndarray
    Output array.

See Also
--------
roll : Roll the elements of an array by a number of positions along a
       given axis.

Examples
--------
>>> a = np.ones((3,4,5,6))
>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)
>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)
>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

>>> from numpy import *
>>> a = arange(3*4*5).reshape(3,4,5)
>>> a.shape
(3, 4, 5)
>>> b = rollaxis(a,1,0)         # transpose array so that axis 1 is 'rolled' before axis 0
>>> b.shape
(4, 3, 5)
>>> b = rollaxis(a,0,2)         # transpose array so that axis 0 is 'rolled' before axis 2
>>> b.shape
(4, 3, 5)

See also: swapaxes, transpose

roots()

numpy.roots(p)

Return the roots of a polynomial with coefficients given in p.

The values in the rank-1 array `p` are coefficients of a polynomial.
If the length of `p` is n+1 then the polynomial is described by
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]

Parameters
----------
p : array_like of shape(M,)
    Rank-1 array of polynomial co-efficients.

Returns
-------
out : ndarray
    An array containing the complex roots of the polynomial.

Raises
------
ValueError:
    When `p` cannot be converted to a rank-1 array.

Examples
--------

>>> coeff = [3.2, 2, 1]
>>> print np.roots(coeff)
[-0.3125+0.46351241j -0.3125-0.46351241j]

rot90()

numpy.rot90(m, k=1)

Rotate an array by 90 degrees in the counter-clockwise direction.

The first two dimensions are rotated; therefore, the array must be at
least 2-D.

Parameters
----------
m : array_like
    Array of two or more dimensions.
k : integer
    Number of times the array is rotated by 90 degrees.

Returns
-------
y : ndarray
    Rotated array.

See Also
--------
fliplr : Flip an array horizontally.
flipud : Flip an array vertically.

Examples
--------
>>> m = np.array([[1,2],[3,4]], int)
>>> m
array([[1, 2],
       [3, 4]])
>>> np.rot90(m)
array([[2, 4],
       [1, 3]])
>>> np.rot90(m, 2)
array([[4, 3],
       [2, 1]])

>>> from numpy import *
>>> a = arange(12).reshape(4,3)
>>> a
array([[ 0,  1,  2],
[ 3,  4,  5],
[ 6,  7,  8],
[ 9, 10, 11]])
>>> rot90(a)                          # 'rotate' the matrix 90 degrees
array([[ 2,  5,  8, 11],
[ 1,  4,  7, 10],
[ 0,  3,  6,  9]])

See also: fliplr, flipud

round()

numpy.round(a, decimals=0, out=None)

Round an array to the given number of decimals.

Refer to `around` for full documentation.

See Also
--------
around : equivalent function

ndarray.round(...)

a.round(decimals=0, out=None)

Return an array rounded a to the given number of decimals.

Refer to `numpy.around` for full documentation.

See Also
--------
numpy.around : equivalent function

round(decimals=0, out=None) -> reference to rounded values.

>>> from numpy import *
>>> array([1.2345, -1.647]).round()                # rounds the items. Type remains float64.
array([ 1., -2.])
>>> array([1, -1]).round()                         # integer arrays stay as they are
array([ 1, -1])
>>> array([1.2345, -1.647]).round(decimals=1)      # round to 1 decimal place
array([ 1.2, -1.6])
>>> array([1.2345+2.34j, -1.647-0.238j]).round()   # both real and complex parts are rounded
array([ 1.+2.j, -2.-0.j])
>>> array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5]).round()  # numpy rounds x.5 to nearest even.
array([ 0.,  0.,  1.,  2.,  2.,  2.])
>>> a = zeros(3, dtype=int)
>>> array([1.2345, -1.647, 3.141]).round(out=a)    # different output arrays may be specified
array([ 1, -2,  3])
>>> a                                              # and the output is cast to the new type
array([ 1, -2,  3])
>>> round_(array([1.2345, -1.647]))                # round_ is the functional form. -> a copy.
array([ 1., -2.])
>>> around(array([1.2345, -1.647]))                # around is an alias of round_.
array([ 1., -2.])

See also: ceil, floor, fix, astype

round_()

numpy.round_(a, decimals=0, out=None)

Round an array to the given number of decimals.

Refer to `around` for full documentation.

See Also
--------
around : equivalent function

row_stack()

numpy.row_stack(tup)

Stack arrays vertically.

`vstack` can be used to rebuild arrays divided by `vsplit`.

Parameters
----------
tup : sequence of arrays
    Tuple containing arrays to be stacked.  The arrays must have the same
    shape along all but the first axis.

See Also
--------
array_split : Split an array into a list of multiple sub-arrays of
              near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
vsplit : Split array into a list of multiple sub-arrays vertically.
dsplit : Split array into a list of multiple sub-arrays along the 3rd axis
         (depth).
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).

Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
       [2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
       [2],
       [3],
       [2],
       [3],
       [4]])

s_

numpy.s_

A nicer way to build up index tuples for arrays.

For any index combination, including slicing and axis insertion,
'a[indices]' is the same as 'a[index_exp[indices]]' for any
array 'a'. However, 'index_exp[indices]' can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.

>>> from numpy import *
>>> s_[1:5]                              # easy slice generating. See r_[] examples.
slice(1, 5, None)
>>> s_[1:10:4]
slice(1, 10, 4)
>>> s_[1:10:4j]
slice(1, 10, 4j)
>>> s_['r',1:3]                          # to return a matrix. If 1-d, result is a 1xN matrix
('r', slice(1, 3, None))
>>> s_['c',1:3]                          # to return a matrix. If 1-d, result is a Nx1 matrix
('c', slice(1, 3, None))

See also: r_, c_, slice, index_exp

safe_eval()

numpy.safe_eval(source)

Protected string evaluation.

Evaluate a string containing a Python literal expression without
allowing the execution of arbitrary non-literal code.

Parameters
----------
source : str

Returns
-------
obj : object

Raises
------
SyntaxError
    If the code has invalid Python syntax, or if it contains non-literal
    code.

Examples
--------
>>> from numpy.lib.utils import safe_eval
>>> safe_eval('1')
1
>>> safe_eval('[1, 2, 3]')
[1, 2, 3]
>>> safe_eval('{"foo": ("bar", 10.0)}')
{'foo': ('bar', 10.0)}
>>> safe_eval('import os')
Traceback (most recent call last):
  ...
SyntaxError: invalid syntax
>>> safe_eval('open("/home/user/.ssh/id_dsa").read()')
Traceback (most recent call last):
  ...
SyntaxError: Unsupported source construct: compiler.ast.CallFunc
>>> safe_eval('dict')
Traceback (most recent call last):
  ...
SyntaxError: Unknown name: dict

sample()

numpy.random.sample(...)

random_sample(size=None)

Return random floats in the half-open interval [0.0, 1.0).

Synonym for random_sample

See also: random_sample, ranf

save()

numpy.save(file, arr)

Save an array to a binary file in NumPy format.

Parameters
----------
f : file or string
    File or filename to which the data is saved.  If the filename
    does not already have a ``.npy`` extension, it is added.
x : array_like
    Array data.

Examples
--------
>>> from tempfile import TemporaryFile
>>> outfile = TemporaryFile()

>>> x = np.arange(10)
>>> np.save(outfile, x)

>>> outfile.seek(0)
>>> np.load(outfile)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

savetxt()

numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ')

Save an array to file.

Parameters
----------
fname : filename or a file handle
    If the filename ends in .gz, the file is automatically saved in
    compressed gzip format.  The load() command understands gzipped
    files transparently.
X : array_like
    Data.
fmt : string or sequence of strings
    A single format (%10.5f), a sequence of formats, or a
    multi-format string, e.g. 'Iteration %d -- %10.5f', in which
    case delimiter is ignored.
delimiter : str
    Character separating columns.

Notes
-----
Further explanation of the `fmt` parameter
(``%[flag]width[.precision]specifier``):

flags:
    ``-`` : left justify

    ``+`` : Forces to preceed result with + or -.

    ``0`` : Left pad the number with zeros instead of space (see width).

width:
    Minimum number of characters to be printed. The value is not truncated
    if it has more characters.

precision:
    - For integer specifiers (eg. ``d,i,o,x``), the minimum number of
      digits.
    - For ``e, E`` and ``f`` specifiers, the number of digits to print
      after the decimal point.
    - For ``g`` and ``G``, the maximum number of significant digits.
    - For ``s``, the maximum number of characters.

specifiers:
    ``c`` : character

    ``d`` or ``i`` : signed decimal integer

    ``e`` or ``E`` : scientific notation with ``e`` or ``E``.

    ``f`` : decimal floating point

    ``g,G`` : use the shorter of ``e,E`` or ``f``

    ``o`` : signed octal

    ``s`` : string of characters

    ``u`` : unsigned decimal integer

    ``x,X`` : unsigned hexadecimal integer

This is not an exhaustive specification.



Examples
--------
>>> savetxt('test.out', x, delimiter=',') # X is an array
>>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays
>>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation

>>> from numpy import *
>>> savetxt("myfile.txt", data)                             # data is 2D array
>>> savetxt("myfile.txt", x)                                # x is 1D array. 1 column in file.
>>> savetxt("myfile.txt", (x,y))                            # x,y are 1D arrays. 2 rows in file.
>>> savetxt("myfile.txt", transpose((x,y)))                 # x,y are 1D arrays. 2 columns in file.
>>> savetxt("myfile.txt", transpose((x,y)), fmt='%6.3f')    # use new format instead of '%.18e'
>>> savetxt("myfile.txt", data, delimiter = ';')            # use ';' to separate columns instead of space

See also: loadtxt, tofile

savez()

numpy.savez(file, *args, **kwds)

Save several arrays into an .npz file format which is a zipped-archive
of arrays

If keyword arguments are given, then filenames are taken from the keywords.
If arguments are passed in with no keywords, then stored file names are
arr_0, arr_1, etc.

Parameters
----------
file : string
    File name of .npz file.
args : Arguments
    Function arguments.
kwds : Keyword arguments
    Keywords.

sctype2char()

numpy.sctype2char(sctype)

searchsorted()

numpy.searchsorted(a, v, side='left')

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array `a` such that, if the corresponding
elements in `v` were inserted before the indices, the order of `a` would
be preserved.

Parameters
----------
a : 1-D array_like of shape (N,)
    Input array, sorted in ascending order.
v : array_like
    Values to insert into `a`.
side : {'left', 'right'}, optional
    If 'left', the index of the first suitable location found is given.  If
    'right', return the last such index.  If there is no suitable
    index, return either 0 or N (where N is the length of `a`).

Returns
-------
indices : array of ints
    Array of insertion points with the same shape as `v`.

See Also
--------
sort : In-place sort.
histogram : Produce histogram from 1-D data.

Notes
-----
Binary search is used to find the required insertion points.

Examples
--------
>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side='right')
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

ndarray.searchsorted(...)

a.searchsorted(v, side='left')

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see `numpy.searchsorted`

See Also
--------
numpy.searchsorted : equivalent function

searchsorted(keys, side="left")

>>> from numpy import *
>>> a = array([1,2,2,3])             # a is 1-D and in ascending order.
>>> a.searchsorted(2)                # side defaults to "left"
1                                    # a[1] is the first element in a >= 2
>>> a.searchsorted(2, side='right')  # look for the other end of the run of twos
3                                    # a[3] is the first element in a > 2
>>> a.searchsorted(4)                # 4 is greater than any element in a
4                                    # the returned index is 1 past the end of a.
>>> a.searchsorted([[1,2],[2,3]])    # whoa, fancy keys
array([[0, 1],                       # the returned array has the same shape as the keys
[1, 3]])
>>> searchsorted(a,2)                # there is a functional form
1

See also: sort, histogram

seed()

numpy.random.seed(...)

seed(seed=None)

Seed the generator.

seed can be an integer, an array (or other sequence) of integers of any
length, or None. If seed is None, then RandomState will try to read data
from /dev/urandom (or the Windows analogue) if available or seed from
the clock otherwise.

>>> seed([1])                                   # seed the pseudo-random number generator
>>> rand(3)
array([ 0.13436424,  0.84743374,  0.76377462])
>>> seed([1])
>>> rand(3)
array([ 0.13436424,  0.84743374,  0.76377462])
>>> rand(3)
array([ 0.25506903,  0.49543509,  0.44949106])

select()

numpy.select(condlist, choicelist, default=0)

Return an array drawn from elements in choicelist, depending on conditions.

Parameters
----------
condlist : list of N boolean arrays of length M
        The conditions C_0 through C_(N-1) which determine
        from which vector the output elements are taken.
choicelist : list of N arrays of length M
        Th vectors V_0 through V_(N-1), from which the output
        elements are chosen.

Returns
-------
output : 1-dimensional array of length M
        The output at position m is the m-th element of the first
        vector V_n for which C_n[m] is non-zero.  Note that the
        output depends on the order of conditions, since the
        first satisfied condition is used.

Notes
-----
Equivalent to:
::

            output = []
            for m in range(M):
                output += [V[m] for V,C in zip(values,cond) if C[m]]
                          or [default]

Examples
--------
>>> t = np.arange(10)
>>> s = np.arange(10)*100
>>> condlist = [t == 4, t > 5]
>>> choicelist = [s, t]
>>> np.select(condlist, choicelist)
array([  0,   0,   0,   0, 400,   0,   6,   7,   8,   9])

>>> from numpy import *
>>> x = array([5., -2., 1., 0., 4., -1., 3., 10.])
>>> select([x < 0, x == 0, x <= 5], [x-0.1, 0.0, x+0.2], default = 100.)
array([   5.2,   -2.1,    1.2,    0. ,    4.2,   -1.1,    3.2,  100. ])
>>>
>>> # This is how it works:
>>>
>>> result = zeros_like(x)
>>> for n in range(len(x)):
...   if   x[n] < 0:  result[n] = x[n]-0.1                                   # The order of the conditions matters. The first one that
...   elif x[n] == 0: result[n] = 0.0                                        # matches, will be 'selected'.
...   elif x[n] <= 5: result[n] = x[n]+0.2
...   else:           result[n] = 100.                                       # The default is used when none of the conditions match
...
>>> result
array([   5.2,   -2.1,    1.2,    0. ,    4.2,   -1.1,    3.2,  100. ])

See also: choose, piecewise

set_numeric_ops()

numpy.set_numeric_ops(...)

set_numeric_ops(op1=func1, op2=func2, ...)

Set numerical operators for array objects.

Parameters
----------
op1, op2, ... : callable
    Each ``op = func`` pair describes an operator to be replaced.
    For example, ``add = lambda x, y: np.add(x, y) % 5`` would replace
    addition by modulus 5 addition.

Returns
-------
saved_ops : list of callables
    A list of all operators, stored before making replacements.

Notes
-----
.. WARNING::
   Use with care!  Incorrect usage may lead to memory errors.

A function replacing an operator cannot make use of that operator.
For example, when replacing add, you may not use ``+``.  Instead,
directly call ufuncs:

>>> def add_mod5(x, y):
...     return np.add(x, y) % 5
...
>>> old_funcs = np.set_numeric_ops(add=add_mod5)

>>> x = np.arange(12).reshape((3, 4))
>>> x + x
array([[0, 2, 4, 1],
       [3, 0, 2, 4],
       [1, 3, 0, 2]])

>>> ignore = np.set_numeric_ops(**old_funcs) # restore operators

set_printoptions()

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None)

Set printing options.

These options determine the way floating point numbers, arrays and
other NumPy objects are displayed.

Parameters
----------
precision : int, optional
    Number of digits of precision for floating point output (default 8).
threshold : int, optional
    Total number of array elements which trigger summarization
    rather than full repr (default 1000).
edgeitems : int, optional
    Number of array items in summary at beginning and end of
    each dimension (default 3).
linewidth : int, optional
    The number of characters per line for the purpose of inserting
    line breaks (default 75).
suppress : bool, optional
    Whether or not suppress printing of small floating point values
    using scientific notation (default False).
nanstr : string, optional
    String representation of floating point not-a-number (default nan).
infstr : string, optional
    String representation of floating point infinity (default inf).

Examples
--------
Floating point precision can be set:

>>> np.set_printoptions(precision=4)
>>> print np.array([1.123456789])
[ 1.1235]

Long arrays can be summarised:

>>> np.set_printoptions(threshold=5)
>>> print np.arange(10)
[0 1 2 ..., 7 8 9]

Small results can be suppressed:

>>> eps = np.finfo(float).eps
>>> x = np.arange(4.)

>>> x**2 - (x + eps)**2
array([ -4.9304e-32,  -4.4409e-16,   0.0000e+00,   0.0000e+00])

>>> np.set_printoptions(suppress=True)

>>> x**2 - (x + eps)**2
array([-0., -0.,  0.,  0.])

>>> from numpy import *
>>> x = array([pi, 1.e-200])
>>> x
array([  3.14159265e+000,   1.00000000e-200])
>>> set_printoptions(precision=3, suppress=True)             # 3 digits behind decimal point + suppress small values
>>> x
array([ 3.142,  0.   ])
>>>
>>> help(set_printoptions)                                   # see help() for keywords 'threshold','edgeitems' and 'linewidth'

set_string_function()

numpy.set_string_function(...)

set_string_function(f, repr=1)

Set a Python function to be used when pretty printing arrays.

Parameters
----------
f : Python function
    Function to be used to pretty print arrays. The function should expect
    a single array argument and return a string of the representation of
    the array.
repr : int
    Unknown.

Examples
--------
>>> def pprint(arr):
...     return 'HA! - What are you going to do now?'
...
>>> np.set_string_function(pprint)
>>> a = np.arange(10)
>>> a
HA! - What are you going to do now?
>>> print a
[0 1 2 3 4 5 6 7 8 9]

setbufsize()

numpy.setbufsize(size)

Set the size of the buffer used in ufuncs.

Parameters
----------
size : int
    Size of buffer.

setdiff1d()

numpy.setdiff1d(ar1, ar2)

Set difference of 1D arrays with unique elements.

Use unique1d() to generate arrays with only unique elements to use as
inputs to this function.

Parameters
----------
ar1 : array_like
    Input array.
ar2 : array_like
    Input comparison array.

Returns
-------
difference : ndarray
    The values in ar1 that are not in ar2.

See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

seterr()

numpy.seterr(all=None, divide=None, over=None, under=None, invalid=None)

Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int16) are
handled like floating point, and are affected by these settings.

Parameters
----------
all : {'ignore', 'warn', 'raise', 'call'}, optional
    Set treatment for all types of floating-point errors at once:

    - ignore: Take no action when the exception occurs
    - warn: Print a RuntimeWarning (via the Python `warnings` module)
    - raise: Raise a FloatingPointError
    - call: Call a function specified using the `seterrcall` function.

    The default is not to change the current behavior.
divide : {'ignore', 'warn', 'raise', 'call'}, optional
    Treatment for division by zero.
over : {'ignore', 'warn', 'raise', 'call'}, optional
    Treatment for floating-point overflow.
under : {'ignore', 'warn', 'raise', 'call'}, optional
    Treatment for floating-point underflow.
invalid : {'ignore', 'warn', 'raise', 'call'}, optional
    Treatment for invalid floating-point operation.

Returns
-------
old_settings : dict
    Dictionary containing the old settings.

See also
--------
seterrcall : set a callback function for the 'call' mode.
geterr, geterrcall

Notes
-----
The floating-point exceptions are defined in the IEEE 754 standard [1]:

- Division by zero: infinite result obtained from finite numbers.
- Overflow: result too large to be expressed.
- Underflow: result so close to zero that some precision
  was lost.
- Invalid operation: result is not an expressible number, typically
  indicates that a NaN was produced.

.. [1] http://en.wikipedia.org/wiki/IEEE_754

Examples
--------

Set mode:

>>> seterr(over='raise') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
 'under': 'ignore'}

>>> old_settings = seterr(all='warn', over='raise') # doctest: +SKIP

>>> int16(32000) * int16(3) # doctest: +SKIP
Traceback (most recent call last):
      File "<stdin>", line 1, in ?
FloatingPointError: overflow encountered in short_scalars
>>> seterr(all='ignore') # doctest: +SKIP
{'over': 'ignore', 'divide': 'ignore', 'invalid': 'ignore',
 'under': 'ignore'}

seterrcall()

numpy.seterrcall(func)

Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages.  The first
is to set the error-handler to 'call', using `seterr`.  Then, set
the function to call using this function.

The second is to set the error-handler to `log`, using `seterr`.
Floating-point errors then trigger a call to the 'write' method of
the provided object.

Parameters
----------
log_func_or_obj : callable f(err, flag) or object with write method
    Function to call upon floating-point errors ('call'-mode) or
    object whose 'write' method is used to log such message ('log'-mode).

    The call function takes two arguments. The first is the
    type of error (one of "divide", "over", "under", or "invalid"),
    and the second is the status flag.  The flag is a byte, whose
    least-significant bits indicate the status::

      [0 0 0 0 invalid over under invalid]

    In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.

    If an object is provided, it's write method should take one argument,
    a string.

Returns
-------
h : callable or log instance
    The old error handler.

Examples
--------
Callback upon error:

>>> def err_handler(type, flag):
    print "Floating point error (%s), with flag %s" % (type, flag)
...

>>> saved_handler = np.seterrcall(err_handler)
>>> save_err = np.seterr(all='call')

>>> np.array([1,2,3])/0.0
Floating point error (divide by zero), with flag 1
array([ Inf,  Inf,  Inf])

>>> np.seterrcall(saved_handler)
>>> np.seterr(**save_err)

Log error message:

>>> class Log(object):
        def write(self, msg):
            print "LOG: %s" % msg
...

>>> log = Log()
>>> saved_handler = np.seterrcall(log)
>>> save_err = np.seterr(all='log')

>>> np.array([1,2,3])/0.0
LOG: Warning: divide by zero encountered in divide

>>> np.seterrcall(saved_handler)
>>> np.seterr(**save_err)

seterrobj()

numpy.seterrobj(...)

seterrobj(errobj)

Used internally by `seterr`.

Parameters
----------
errobj : list
    [buffer_size, error_mask, callback_func]

See Also
--------
seterrcall

setfield()

ndarray.setfield(...)

m.setfield(value, dtype, offset) -> None.
places val into field of the given array defined by the data type and offset.

setflags()

ndarray.setflags(...)

a.setflags(write=None, align=None, uic=None)

setmember1d()

numpy.setmember1d(ar1, ar2)

Return a boolean array set True where first element is in second array.

Boolean array is the shape of `ar1` containing True where the elements
of `ar1` are in `ar2` and False otherwise.

Use unique1d() to generate arrays with only unique elements to use as
inputs to this function.

Parameters
----------
ar1 : array_like
    Input array.
ar2 : array_like
    Input array.

Returns
-------
mask : ndarray, bool
    The values `ar1[mask]` are in `ar2`.

See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

setxor1d()

numpy.setxor1d(ar1, ar2)

Set exclusive-or of 1D arrays with unique elements.

Use unique1d() to generate arrays with only unique elements to use as
inputs to this function.

Parameters
----------
ar1 : array_like
    Input array.
ar2 : array_like
    Input array.

Returns
-------
xor : ndarray
    The values that are only in one, but not both, of the input arrays.

See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

shape() or .shape

numpy.shape(a)

Return the shape of an array.

Parameters
----------
a : array_like
    Input array.

Returns
-------
shape : tuple
    The elements of the tuple give the lengths of the corresponding array
    dimensions.

See Also
--------
alen,
ndarray.shape : array method

Examples
--------
>>> np.shape(np.eye(3))
(3, 3)
>>> np.shape([[1,2]])
(1, 2)
>>> np.shape([0])
(1,)
>>> np.shape(0)
()

>>> a = np.array([(1,2),(3,4)], dtype=[('x', 'i4'), ('y', 'i4')])
>>> np.shape(a)
(2,)
>>> a.shape
(2,)

ndarray.shape

Tuple of array dimensions.

Examples
--------
>>> x = np.array([1,2,3,4])
>>> x.shape
(4,)
>>> y = np.zeros((4,5,6))
>>> y.shape
(4, 5, 6)
>>> y.shape = (2, 5, 2, 3, 2)
>>> y.shape
(2, 5, 2, 3, 2)

>>> from numpy import *
>>> x = arange(12)
>>> x.shape
(12,)
>>> x.shape = (3,4)               # array with 3 rows and 4 columns. 3x4=12. Total number of elements is always the same.
>>> x
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> x.shape = (3,2,2)             # 3x2x2 array; 3x2x2 = 12. x itself _does_ change, unlike reshape().
>>> x
array([[[ 0,  1],
[ 2,  3]],
[[ 4,  5],
[ 6,  7]],
[[ 8,  9],
[10, 11]]])
>>> x.shape = (2,-1)              # 'missing' -1 value n is calculated so that 2xn=12, so n=6
>>> x
array([[ 0,  1,  2,  3,  4,  5],
[ 6,  7,  8,  9, 10, 11]])
>>> x.shape = 12                  # x.shape = (1,12) is not the same as x.shape = 12
>>> x
array([0,1,2,3,4,5,6,7,8,9,10,11])

See also: reshape

show_config()

numpy.show_config()

shuffle()

numpy.random.shuffle(...)

shuffle(x)

Modify a sequence in-place by shuffling its contents.

>>> from numpy import *
>>> from numpy.random import shuffle
>>> x = array([1,50,-1,3])
>>> shuffle(x)                           # shuffle the elements of x
>>> print x
[-1  3 50  1]
>>> x = ['a','b','c','z']
>>> shuffle(x)                           # works with any sequence
>>> print x
['a', 'c', 'z', 'b']

See also: permutation, bytes

sign()

numpy.sign(...)

y = sign(x)

Returns an element-wise indication of the sign of a number.

The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``.

Parameters
----------
x : array_like
  Input values.

Returns
-------
y : ndarray
  The sign of `x`.

Examples
--------
>>> np.sign([-5., 4.5])
array([-1.,  1.])
>>> np.sign(0)
0

signbit()

numpy.signbit(...)

y = signbit(x)

Returns element-wise True where signbit is set (less than zero).

Parameters
----------
x: array_like
    The input value(s).

Returns
-------
out : array_like, bool
    Output.

Examples
--------
>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
array([False,  True, False], dtype=bool)

sin()

numpy.sin(...)

y = sin(x)

Trigonometric sine, element-wise.

Parameters
----------
x : array_like
    Angle, in radians (:math:`2 \pi` rad equals 360 degrees).

Returns
-------
y : array_like
    The sine of each element of x.

See Also
--------
arcsin, sinh, cos

Notes
-----
The sine is one of the fundamental functions of trigonometry
(the mathematical study of triangles).  Consider a circle of radius
1 centered on the origin.  A ray comes in from the :math:`+x` axis,
makes an angle at the origin (measured counter-clockwise from that
axis), and departs from the origin.  The :math:`y` coordinate of
the outgoing ray's intersection with the unit circle is the sine
of that angle.  It ranges from -1 for :math:`x=3\pi / 2` to
+1 for :math:`\pi / 2.`  The function has zeroes where the angle is
a multiple of :math:`\pi`.  Sines of angles between :math:`\pi` and
:math:`2\pi` are negative.  The numerous properties of the sine and
related functions are included in any standard trigonometry text.

Examples
--------
Print sine of one angle:

>>> np.sin(np.pi/2.)
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. )
array([ 0.        ,  0.5       ,  0.70710678,  0.8660254 ,  1.        ])

Plot the sine function:

>>> import matplotlib.pylab as plt
>>> x = np.linspace(-np.pi, np.pi, 201)
>>> plt.plot(x, np.sin(x))
>>> plt.xlabel('Angle [rad]')
>>> plt.ylabel('sin(x)')
>>> plt.axis('tight')
>>> plt.show()

sinc()

numpy.sinc(x)

Return the sinc function.

The sinc function is :math:`\sin(\pi x)/(\pi x)`.

Parameters
----------
x : ndarray
    Array (possibly multi-dimensional) of values for which to to
    calculate ``sinc(x)``.

Returns
-------
out : ndarray
    ``sinc(x)``, which has the same shape as the input.

Notes
-----
``sinc(0)`` is the limit value 1.

The name sinc is short for "sine cardinal" or "sinus cardinalis".

The sinc function is used in various signal processing applications,
including in anti-aliasing, in the construction of a
Lanczos resampling filter, and in interpolation.

For bandlimited interpolation of discrete-time signals, the ideal
interpolation kernel is proportional to the sinc function.

References
----------
.. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web
       Resource. http://mathworld.wolfram.com/SincFunction.html
.. [2] Wikipedia, "Sinc function",
       http://en.wikipedia.org/wiki/Sinc_function

Examples
--------
>>> x = np.arange(-20., 21.)/5.
>>> np.sinc(x)
array([ -3.89804309e-17,  -4.92362781e-02,  -8.40918587e-02,
        -8.90384387e-02,  -5.84680802e-02,   3.89804309e-17,
         6.68206631e-02,   1.16434881e-01,   1.26137788e-01,
         8.50444803e-02,  -3.89804309e-17,  -1.03943254e-01,
        -1.89206682e-01,  -2.16236208e-01,  -1.55914881e-01,
         3.89804309e-17,   2.33872321e-01,   5.04551152e-01,
         7.56826729e-01,   9.35489284e-01,   1.00000000e+00,
         9.35489284e-01,   7.56826729e-01,   5.04551152e-01,
         2.33872321e-01,   3.89804309e-17,  -1.55914881e-01,
        -2.16236208e-01,  -1.89206682e-01,  -1.03943254e-01,
        -3.89804309e-17,   8.50444803e-02,   1.26137788e-01,
         1.16434881e-01,   6.68206631e-02,   3.89804309e-17,
        -5.84680802e-02,  -8.90384387e-02,  -8.40918587e-02,
        -4.92362781e-02,  -3.89804309e-17])

>>> import matplotlib.pyplot as plt
>>> plt.plot(x, sinc(x))
>>> plt.title("Sinc Function")
>>> plt.ylabel("Amplitude")
>>> plt.xlabel("X")
>>> plt.show()

It works in 2-D as well:

>>> x = np.arange(-200., 201.)/50.
>>> xx = np.outer(x, x)
>>> plt.imshow(sinc(xx))

sinh()

numpy.sinh(...)

y = sinh(x)

Hyperbolic sine, element-wise.

Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or
``-1j * np.sin(1j*x)``.

Parameters
----------
x : array_like
    Input array.

Returns
-------
out : ndarray
    Output array of same shape as `x`.

size() or .size

numpy.size(a, axis=None)

Return the number of elements along a given axis.

Parameters
----------
a : array_like
    Input data.
axis : int, optional
    Axis along which the elements are counted.  By default, give
    the total number of elements.

Returns
-------
element_count : int
    Number of elements along the specified axis.

See Also
--------
shape : dimensions of array
ndarray.shape : dimensions of array
ndarray.size : number of elements in array

Examples
--------
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

ndarray.size

Number of elements in the array.

Examples
--------
>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.size
30

slice

>>> s = slice(3,9,2)                     # slice objects exist outside numpy
>>> from numpy import *
>>> a = arange(20)
>>> a[s]
array([3, 5, 7])
>>> a[3:9:2]                             # same thing
array([3, 5, 7])

See also: [], ..., newaxis, s_, ix_, indices, index_exp

solve()

numpy.linalg.solve(a, b)

Solve the equation ``a x = b`` for ``x``.

Parameters
----------
a : array_like, shape (M, M)
    Input equation coefficients.
b : array_like, shape (M,)
    Equation target values.

Returns
-------
x : array, shape (M,)

Raises
------
LinAlgError
    If `a` is singular or not square.

Examples
--------
Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:

>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([ 2.,  3.])

Check that the solution is correct:

>>> (np.dot(a, x) == b).all()
True

>>> from numpy import *
>>> from numpy.linalg import solve
>>>
>>> # The system of equations we want to solve for (x0,x1,x2):
>>> #  3 * x0 + 1 * x1 + 5 * x2 = 6
>>> #  1 * x0 +          8 * x2 = 7
>>> #  2 * x0 + 1 * x1 + 4 * x2 = 8
>>>
>>> a = array([[3,1,5],[1,0,8],[2,1,4]])
>>> b = array([6,7,8])
>>> x = solve(a,b)
>>> print x                                                  # This is our solution
[-3.28571429  9.42857143  1.28571429]
>>>
>>> dot(a,x)                                                 # Just checking if we indeed obtain the righthand side
array([ 6.,  7.,  8.])

See also: inv

sometrue()

numpy.sometrue(a, axis=None, out=None)

Check whether some values are true.

Refer to `any` for full documentation.

See Also
--------
any : equivalent function

>>> from numpy import *
>>> b = array([True, False, True, True])
>>> sometrue(b)
True
>>> a = array([1, 5, 2, 7])
>>> sometrue(a >= 5)
True

See also: alltrue, all, any

sort()

numpy.sort(a, axis=-1, kind='quicksort', order=None)

Return a sorted copy of an array.

Parameters
----------
a : array_like
    Array to be sorted.
axis : int or None, optional
    Axis along which to sort. If None, the array is flattened before
    sorting. The default is -1, which sorts along the last axis.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
    Sorting algorithm. Default is 'quicksort'.
order : list, optional
    When `a` is a structured array, this argument specifies which fields
    to compare first, second, and so on.  This list does not need to
    include all of the fields.

Returns
-------
sorted_array : ndarray
    Array of the same type and shape as `a`.

See Also
--------
ndarray.sort : Method to sort an array in-place.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in a sorted array.

Notes
-----
The various sorting algorithms are characterized by their average speed,
worst case performance, work space size, and whether they are stable. A
stable sort keeps items with the same key in the same relative
order. The three available algorithms have the following
properties:

=========== ======= ============= ============ =======
   kind      speed   worst case    work space  stable
=========== ======= ============= ============ =======
'quicksort'    1     O(n^2)            0          no
'mergesort'    2     O(n*log(n))      ~n/2        yes
'heapsort'     3     O(n*log(n))       0          no
=========== ======= ============= ============ =======

All the sort algorithms make temporary copies of the data when
sorting along any but the last axis.  Consequently, sorting along
the last axis is faster and uses less space than sorting along
any other axis.

Examples
--------
>>> a = np.array([[1,4],[3,1]])
>>> np.sort(a)                # sort along the last axis
array([[1, 4],
       [1, 3]])
>>> np.sort(a, axis=None)     # sort the flattened array
array([1, 1, 3, 4])
>>> np.sort(a, axis=0)        # sort along the first axis
array([[1, 1],
       [3, 4]])

Use the `order` keyword to specify a field to use when sorting a
structured array:

>>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
>>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
...           ('Galahad', 1.7, 38)]
>>> a = np.array(values, dtype=dtype)       # create a structured array
>>> np.sort(a, order='height')                        # doctest: +SKIP
array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
       ('Lancelot', 1.8999999999999999, 38)],
      dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

Sort by age, then height if ages are equal:

>>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP
array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
       ('Arthur', 1.8, 41)],
      dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])

ndarray.sort(...)

a.sort(axis=-1, kind='quicksort', order=None)

Sort an array, in-place.

Parameters
----------
axis : int, optional
    Axis along which to sort. Default is -1, which means sort along the
    last axis.
kind : {'quicksort', 'mergesort', 'heapsort'}, optional
    Sorting algorithm. Default is 'quicksort'.
order : list, optional
    When `a` is an array with fields defined, this argument specifies
    which fields to compare first, second, etc.  Not all fields need be
    specified.

See Also
--------
numpy.sort : Return a sorted copy of an array.
argsort : Indirect sort.
lexsort : Indirect stable sort on multiple keys.
searchsorted : Find elements in sorted array.

Notes
-----
See ``sort`` for notes on the different sorting algorithms.

Examples
--------
>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
       [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
       [1, 4]])

Use the `order` keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
      dtype=[('x', '|S1'), ('y', '<i4')])

sort(axis=-1, kind="quicksort")

>>> from numpy import *
>>> a = array([2,0,8,4,1])
>>> a.sort()                        # in-place sorting with quicksort (default)
>>> a
array([0, 1, 2, 4, 8])
>>> a.sort(kind='mergesort')        # algorithm options are 'quicksort', 'mergesort' and 'heapsort'
>>> a = array([[8,4,1],[2,0,9]])
>>> a.sort(axis=0)
>>> a
array([[2, 0, 1],
[8, 4, 9]])
>>> a = array([[8,4,1],[2,0,9]])
>>> a.sort(axis=1)                  # default axis = -1
>>> a
array([[1, 4, 8],
[0, 2, 9]])
>>> sort(a)                         # there is a functional form

See also: argsort, lexsort

sort_complex()

numpy.sort_complex(a)

Sort a complex array using the real part first, then the imaginary part.

Parameters
----------
a : array_like
    Input array

Returns
-------
out : complex ndarray
    Always returns a sorted complex array.

Examples
--------
>>> np.sort_complex([5, 3, 6, 2, 1])
array([ 1.+0.j,  2.+0.j,  3.+0.j,  5.+0.j,  6.+0.j])
>>> np.sort_complex([5 + 2j, 3 - 1j, 6 - 2j, 2 - 3j, 1 - 5j])
array([ 1.-5.j,  2.-3.j,  3.-1.j,  5.+2.j,  6.-2.j])

source()

numpy.source(object, output=<open file '<stdout>', mode 'w' at 0x00AFF068>)

Print or write to a file the source code for a Numpy object.

Parameters
----------
object : numpy object
    Input object.
output : file object, optional
    If `output` not supplied then source code is printed to screen
    (sys.stdout).  File object must be created with either write 'w' or
    append 'a' modes.

split()

numpy.split(ary, indices_or_sections, axis=0)

Split an array into multiple sub-arrays of equal size.

Parameters
----------
ary : ndarray
    Array to be divided into sub-arrays.
indices_or_sections: integer or 1D array
    If `indices_or_sections` is an integer, N, the array will be divided
    into N equal arrays along `axis`.  If such a split is not possible,
    an error is raised.

    If `indices_or_sections` is a 1D array of sorted integers, the entries
    indicate where along `axis` the array is split.  For example,
    ``[2, 3]`` would, for ``axis = 0``, result in

      - ary[:2]
      - ary[2:3]
      - ary[3:]

    If an index exceeds the dimension of the array along `axis`,
    an empty sub-array is returned correspondingly.
axis : integer, optional
    The axis along which to split.  Default is 0.

Returns
-------
sub-arrays : list
    A list of sub-arrays.

Raises
------
ValueError
    If `indices_or_sections` is given as an integer, but
    a split does not result in equal division.

See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
              near-equal size.  Does not raise an exception if
              an equal division cannot be made.
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
vsplit : Split array into multiple sub-arrays vertically (row wise).
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise).
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third dimension).

Examples
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([ 0.,  1.,  2.]), array([ 3.,  4.,  5.]), array([ 6.,  7.,  8.])]

>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
<BLANKLINE>
[array([ 0.,  1.,  2.]),
 array([ 3.,  4.]),
 array([ 5.]),
 array([ 6.,  7.]),
 array([], dtype=float64)]

>>> from numpy import *
>>> a = array([[1,2,3,4],[5,6,7,8]])
>>> split(a,2,axis=0)                                                # split a in 2 parts. row-wise
array([[1, 2, 3, 4]]), array([[5, 6, 7, 8]])]
>>> split(a,4,axis=1)                                                # split a in 4 parts, column-wise
[array([[1],
[5]]), array([[2],
[6]]), array([[3],
[7]]), array([[4],
[8]])]
>>> split(a,3,axis=1)                                                # impossible to split in 3 equal parts -> error (SEE: array_split)
Traceback (most recent call last):
<snip>
ValueError: array split does not result in an equal division
>>> split(a,[2,3],axis=1)                                            # make a split before the 2nd and the 3rd column
[array([[1, 2],
[5, 6]]), array([[3],
[7]]), array([[4],
[8]])]

See also: dsplit, hsplit, vsplit, array_split, concatenate

sqrt()

numpy.sqrt(...)

y = sqrt(x)

Return the positive square-root of an array, element-wise.

Parameters
----------
x : array_like
    The square root of each element in this array is calculated.

Returns
-------
y : ndarray
    An array of the same shape as `x`, containing the square-root of
    each element in `x`.  If any element in `x`
    is complex, a complex array is returned.  If all of the elements
    of `x` are real, negative elements return numpy.nan elements.

See Also
--------
numpy.lib.scimath.sqrt
    A version which returns complex numbers when given negative reals.

Notes
-----
`sqrt` has a branch cut ``[-inf, 0)`` and is continuous from above on it.

Examples
--------
>>> np.sqrt([1,4,9])
array([ 1.,  2.,  3.])

>>> np.sqrt([4, -1, -3+4J])
array([ 2.+0.j,  0.+1.j,  1.+2.j])

>>> np.sqrt([4, -1, numpy.inf])
array([  2.,  NaN,  Inf])

square()

numpy.square(...)

y = square(x)

Return the element-wise square of the input.

Parameters
----------
x : array_like
    Input data.

Returns
-------
out : ndarray
    Element-wise `x*x`, of the same shape and dtype as `x`.
    Returns scalar if `x` is a scalar.

See Also
--------
numpy.linalg.matrix_power
sqrt
power

Examples
--------
>>> np.square([-1j, 1])
array([-1.-0.j,  1.+0.j])

squeeze()

numpy.squeeze(a)

Remove single-dimensional entries from the shape of an array.

Parameters
----------
a : array_like
    Input data.

Returns
-------
squeezed : ndarray
    The input array, but with with all dimensions of length 1
    removed.  Whenever possible, a view on `a` is returned.

Examples
--------
>>> x = np.array([[[0], [1], [2]]])
>>> x.shape
(1, 3, 1)
>>> np.squeeze(x).shape
(3,)

ndarray.squeeze(...)

a.squeeze()

Remove single-dimensional entries from the shape of `a`.

Refer to `numpy.squeeze` for full documentation.

See Also
--------
numpy.squeeze : equivalent function

>>> from numpy import *
>>> a = arange(6)
>>> a = a.reshape(1,2,1,1,3,1)
>>> a
array([[[[[[0],
[1],
[2]]]],
[[[[3],
[4],
[5]]]]]])
>>> a.squeeze()                     # result has shape 2x3, all dimensions with length 1 are removed
array([[0, 1, 2],
[3, 4, 5]])
>>> squeeze(a)                      # also exists

standard_normal()

numpy.random.standard_normal(...)

standard_normal(size=None)

Standard Normal distribution (mean=0, stdev=1).

>>> standard_normal((2,3))
array([[ 1.12557608, -0.13464922, -0.35682992],
[-1.54090277,  1.21551589, -1.82854551]])

See also: randn, uniform, poisson, seed

std()

numpy.std(a, axis=None, dtype=None, out=None, ddof=0)

Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution,
of the array elements. The standard deviation is computed for the
flattened array by default, otherwise over the specified axis.

Parameters
----------
a : array_like
    Calculate the standard deviation of these values.
axis : int, optional
    Axis along which the standard deviation is computed. The default is
    to compute the standard deviation of the flattened array.
dtype : dtype, optional
    Type to use in computing the standard deviation. For arrays of
    integer type the default is float64, for arrays of float types it is
    the same as the array type.
out : ndarray, optional
    Alternative output array in which to place the result. It must have
    the same shape as the expected output but the type (of the calculated
    values) will be cast if necessary.
ddof : int, optional
    Means Delta Degrees of Freedom.  The divisor used in calculations
    is ``N - ddof``, where ``N`` represents the number of elements.
    By default `ddof` is zero (biased estimate).

Returns
-------
standard_deviation : {ndarray, scalar}; see dtype parameter above.
    If `out` is None, return a new array containing the standard deviation,
    otherwise return a reference to the output array.

See Also
--------
numpy.var : Variance
numpy.mean : Average

Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean, i.e., ``var = sqrt(mean(abs(x - x.mean())**2))``.

The mean is normally calculated as ``x.sum() / N``, where
``N = len(x)``.  If, however, `ddof` is specified, the divisor ``N - ddof``
is used instead.

Note that, for complex numbers, std takes the absolute
value before squaring, so that the result is always real and nonnegative.

Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, 0)
array([ 1.,  1.])
>>> np.std(a, 1)
array([ 0.5,  0.5])

ndarray.std(...)

a.std(axis=None, dtype=None, out=None, ddof=0)

Returns the standard deviation of the array elements along given axis.

Refer to `numpy.std` for full documentation.

See Also
--------
numpy.std : equivalent function

>>> from numpy import *
>>> a = array([1.,2,7])
>>> a.std()                              # normalized by N (not N-1)
2.6246692913372702
>>> a = array([[1.,2,7],[4,9,6]])
>>> a.std()
2.793842435706702
>>> a.std(axis=0)                        # standard deviation of each of the 3 columns
array([ 1.5,  3.5,  0.5])
>>> a.std(axis=1)                        # standard deviation of each of the 2 columns
array([ 2.62466929,  2.05480467])

See also: mean, var, cov

subtract()

numpy.subtract(...)

y = subtract(x1,x2)

Subtract arguments element-wise.

Parameters
----------
x1, x2 : array_like
    The arrays to be subtracted from each other.  If type is 'array_like'
    the `x1` and `x2` shapes must be identical.

Returns
-------
y : ndarray
    The difference of `x1` and `x2`, element-wise.  Returns a scalar if
    both  `x1` and `x2` are scalars.

Notes
-----
Equivalent to `x1` - `x2` in terms of array-broadcasting.

Examples
--------
>>> np.subtract(1.0, 4.0)
-3.0

>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.subtract(x1, x2)
array([[ 0.,  0.,  0.],
       [ 3.,  3.,  3.],
       [ 6.,  6.,  6.]])

sum()

numpy.sum(a, axis=None, dtype=None, out=None)

Return the sum of array elements over a given axis.

Parameters
----------
a : array_like
    Elements to sum.
axis : integer, optional
    Axis over which the sum is taken. By default `axis` is None,
    and all elements are summed.
dtype : dtype, optional
    The type of the returned array and of the accumulator in which
    the elements are summed.  By default, the dtype of `a` is used.
    An exception is when `a` has an integer type with less precision
    than the default platform integer.  In that case, the default
    platform integer is used instead.
out : ndarray, optional
    Array into which the output is placed.  By default, a new array is
    created.  If `out` is given, it must be of the appropriate shape
    (the shape of `a` with `axis` removed, i.e.,
    ``numpy.delete(a.shape, axis)``).  Its type is preserved.

Returns
-------
sum_along_axis : ndarray
    An array with the same shape as `a`, with the specified
    axis removed.   If `a` is a 0-d array, or if `axis` is None, a scalar
    is returned.  If an output array is specified, a reference to
    `out` is returned.

See Also
--------
ndarray.sum : equivalent method

Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.

Examples
--------
>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

If the accumulator is too small, overflow occurs:

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

ndarray.sum(...)

a.sum(axis=None, dtype=None, out=None)

Return the sum of the array elements over the given axis.

Refer to `numpy.sum` for full documentation.

See Also
--------
numpy.sum : equivalent function

>>> from numpy import *
>>> a = array([1,2,3])
>>> a.sum()
6
>>> sum(a)                                   # also exists
>>> a = array([[1,2,3],[4,5,6]])
>>> a.sum()
21
>>> a.sum(dtype=float)                     # specify type of output
21.0
>>> a.sum(axis=0)                          # sum over rows for each of the 3 columns
array([5, 7, 9])
>>> a.sum(axis=1)                         # sum over columns for each of the 2 rows
array([ 6, 15])

See also: accumulate, nan, cumsum, prod

svd()

numpy.linalg.svd(a, full_matrices=1, compute_uv=1)

Singular Value Decomposition.

Factorizes the matrix `a` into two unitary matrices, ``U`` and ``Vh``,
and a 1-dimensional array of singular values, ``s`` (real, non-negative),
such that ``a == U S Vh``, where ``S`` is the diagonal
matrix ``np.diag(s)``.

Parameters
----------
a : array_like, shape (M, N)
    Matrix to decompose
full_matrices : boolean, optional
    If True (default), ``U`` and ``Vh`` are shaped
    ``(M,M)`` and ``(N,N)``.  Otherwise, the shapes are
    ``(M,K)`` and ``(K,N)``, where ``K = min(M,N)``.
compute_uv : boolean
    Whether to compute ``U`` and ``Vh`` in addition to ``s``.
    True by default.

Returns
-------
U : ndarray, shape (M, M) or (M, K) depending on `full_matrices`
    Unitary matrix.
s :  ndarray, shape (K,) where ``K = min(M, N)``
    The singular values, sorted so that ``s[i] >= s[i+1]``.
Vh : ndarray, shape (N,N) or (K,N) depending on `full_matrices`
    Unitary matrix.

Raises
------
LinAlgError
    If SVD computation does not converge.

Notes
-----
If `a` is a matrix (in contrast to an ndarray), then so are all
the return values.

Examples
--------
>>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
>>> U, s, Vh = np.linalg.svd(a)
>>> U.shape, Vh.shape, s.shape
((9, 9), (6, 6), (6,))

>>> U, s, Vh = np.linalg.svd(a, full_matrices=False)
>>> U.shape, Vh.shape, s.shape
((9, 6), (6, 6), (6,))
>>> S = np.diag(s)
>>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
True

>>> s2 = np.linalg.svd(a, compute_uv=False)
>>> np.allclose(s, s2)
True

>>> from numpy import *
>>> from numpy.linalg import svd
>>> A = array([[1., 3., 5.],[2., 4., 6.]])     # A is a (2x3) matrix
>>> U,sigma,V = svd(A)
>>> print U                                    # U is a (2x2) unitary matrix
[[-0.61962948 -0.78489445]
[-0.78489445  0.61962948]]
>>> print sigma                                # non-zero diagonal elements of Sigma
[ 9.52551809  0.51430058]
>>> print V                                    # V is a (3x3) unitary matrix
[[-0.2298477  -0.52474482 -0.81964194]
[ 0.88346102  0.24078249 -0.40189603]
[ 0.40824829 -0.81649658  0.40824829]]
>>> Sigma = zeros_like(A)                      # constructing Sigma from sigma
>>> n = min(A.shape)
>>> Sigma[:n,:n] = diag(sigma)
>>> print dot(U,dot(Sigma,V))                  # A = U * Sigma * V
[[ 1.  3.  5.]
[ 2.  4.  6.]]

See also: pinv

swapaxes()

numpy.swapaxes(a, axis1, axis2)

Interchange two axes of an array.

Parameters
----------
a : array_like
    Input array.
axis1 : int
    First axis.
axis2 : int
    Second axis.

Returns
-------
a_swapped : ndarray
    If `a` is an ndarray, then a view of `a` is returned; otherwise
    a new array is created.

Examples
--------
>>> x = np.array([[1,2,3]])
>>> np.swapaxes(x,0,1)
array([[1],
       [2],
       [3]])

>>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
>>> x
array([[[0, 1],
        [2, 3]],
<BLANKLINE>
       [[4, 5],
        [6, 7]]])

>>> np.swapaxes(x,0,2)
array([[[0, 4],
        [2, 6]],
<BLANKLINE>
       [[1, 5],
        [3, 7]]])

ndarray.swapaxes(...)

a.swapaxes(axis1, axis2)

Return a view of the array with `axis1` and `axis2` interchanged.

Refer to `numpy.swapaxes` for full documentation.

See Also
--------
numpy.swapaxes : equivalent function

>>> from numpy import *
>>> a = arange(30)
>>> a = a.reshape(2,3,5)
>>> a
array([[[ 0,  1,  2,  3,  4],
[ 5,  6,  7,  8,  9],
[10, 11, 12, 13, 14]],
[[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])
>>> b = a.swapaxes(1,2)                           # swap the 2nd and the 3rd axis
>>> b
array([[[ 0,  5, 10],
[ 1,  6, 11],
[ 2,  7, 12],
[ 3,  8, 13],
[ 4,  9, 14]],
[[15, 20, 25],
[16, 21, 26],
[17, 22, 27],
[18, 23, 28],
[19, 24, 29]]])
>>> b.shape
(2, 5, 3)
>>> b[0,0,0] = -1                                 # be aware that b is a reference, not a copy
>>> print a[0,0,0]

See also: transpose, rollaxis

take()

numpy.take(a, indices, axis=None, out=None, mode='raise')

Take elements from an array along an axis.

This function does the same thing as "fancy" indexing (indexing arrays
using arrays); however, it can be easier to use if you need elements
along a given axis.

Parameters
----------
a : array_like
    The source array.
indices : array_like, int
    The indices of the values to extract.
axis : int, optional
    The axis over which to select values.  By default, the
    flattened input array is used.
out : ndarray, optional
    If provided, the result will be placed in this array. It should
    be of the appropriate shape and dtype.
mode : {'raise', 'wrap', 'clip'}, optional
    Specifies how out-of-bounds indices will behave.
    'raise' -- raise an error
    'wrap' -- wrap around
    'clip' -- clip to the range

Returns
-------
subarray : ndarray
    The returned array has the same type as `a`.

See Also
--------
ndarray.take : equivalent method

Examples
--------
>>> a = [4, 3, 5, 7, 6, 8]
>>> indices = [0, 1, 4]
>>> np.take(a, indices)
array([4, 3, 6])

In this example if `a` is a ndarray, "fancy" indexing can be used.
>>> a = np.array(a)
>>> a[indices]
array([4, 3, 6])

ndarray.take(...)

a.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of a at the given indices.

Refer to `numpy.take` for full documentation.

See Also
--------
numpy.take : equivalent function

>>> from numpy import *
>>> a= array([10,20,30,40])
>>> a.take([0,0,3])                                    # [0,0,3] is a set of indices
array([10, 10, 40])
>>> a[[0,0,3]]                                         # the same effect
array([10, 10, 40])
>>> a.take([[0,1],[0,1]])                              # shape of return array depends on shape of indices array
array([[10, 20],
[10, 20]])
>>> a = array([[10,20,30],[40,50,60]])
>>> a.take([0,2],axis=1)
array([[10, 30],
[40, 60]])
>>> take(a,[0,2],axis=1)                               # also exists

See also: [], put, putmask, compress, choose

tan()

numpy.tan(...)

y = tan(x)

Compute tangent element-wise.

Parameters
----------
x : array_like
  Angles in radians.

Returns
-------
y : ndarray
  The corresponding tangent values.


Examples
--------
>>> from math import pi
>>> np.tan(np.array([-pi,pi/2,pi]))
array([  1.22460635e-16,   1.63317787e+16,  -1.22460635e-16])

tanh()

numpy.tanh(...)

y = tanh(x)

Hyperbolic tangent element-wise.

Parameters
----------
x : array_like
    Input array.

Returns
-------
y : ndarray
    The corresponding hyperbolic tangent values.

tensordot()

numpy.tensordot(a, b, axes=2)

Returns the tensor dot product for (ndim >= 1) arrays along an axes.

The first element of the sequence determines the axis or axes
in `a` to sum over, and the second element in `axes` argument sequence
determines the axis or axes in `b` to sum over.

Parameters
----------
a : array_like
    Input array.
b : array_like
    Input array.
axes : shape tuple
    Axes to be summed over.

See Also
--------
dot

Notes
-----
r_{xxx, yyy} = \sum_k a_{xxx,k} b_{k,yyy}

When there is more than one axis to sum over, the corresponding
arguments to axes should be sequences of the same length with the first
axis to sum over given first in both sequences, the second axis second,
and so forth.

If the `axes` argument is an integer, N, then the last N dimensions of `a`
and first N dimensions of `b` are summed over.

Examples
--------
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> c = np.tensordot(a,b, axes=([1,0],[0,1]))
>>> c.shape
(5,2)
>>> c
array([[ 4400.,  4730.],
       [ 4532.,  4874.],
       [ 4664.,  5018.],
       [ 4796.,  5162.],
       [ 4928.,  5306.]])

>>> # A slower but equivalent way of computing the same...
>>> c = zeros((5,2))
>>> for i in range(5):
...   for j in range(2):
...     for k in range(3):
...       for n in range(4):
...         c[i,j] += a[k,n,i] * b[n,k,j]

>>> from numpy import *
>>> a = arange(60.).reshape(3,4,5)
>>> b = arange(24.).reshape(4,3,2)
>>> c = tensordot(a,b, axes=([1,0],[0,1]))     # sum over the 1st and 2nd dimensions
>>> c.shape
(5,2)
>>> # A slower but equivalent way of computing the same:
>>> c = zeros((5,2))
>>> for i in range(5):
...   for j in range(2):
...     for k in range(3):
...       for n in range(4):
...         c[i,j] += a[k,n,i] * b[n,k,j]
...

See also: dot

test()

numpy.test(self, label='fast', verbose=1, extra_argv=None, doctests=False, coverage=False, **kwargs)

Run tests for module using nose

Parameters
----------
label : {'fast', 'full', '', attribute identifer}
    Identifies the tests to run.  This can be a string to
    pass to the nosetests executable with the '-A' option, or one of
    several special values.
    Special values are:
        'fast' - the default - which corresponds to nosetests -A option
                 of 'not slow'.
        'full' - fast (as above) and slow tests as in the
                 no -A option to nosetests - same as ''
    None or '' - run all tests
    attribute_identifier - string passed directly to nosetests as '-A'
verbose : integer
    verbosity value for test outputs, 1-10
extra_argv : list
    List with any extra args to pass to nosetests
doctests : boolean
    If True, run doctests in module, default False
coverage : boolean
    If True, report coverage of NumPy code, default False
    (Requires the coverage module:
     http://nedbatchelder.com/code/modules/coverage.html)

tile()

numpy.tile(A, reps)

Construct an array by repeating A the number of times given by reps.

Parameters
----------
A : array_like
    The input array.
reps : array_like
    The number of repetitions of `A` along each axis.

Returns
-------
c : ndarray
    The output array.

See Also
--------
repeat

Notes
-----
If `reps` has length d, the result will have dimension of max(d, `A`.ndim).

If `A`.ndim < d, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1,3) for 2-D replication,
or shape (1,1,3) for 3-D replication. If this is not the desired behavior,
promote `A` to d-dimensions manually before calling this function.

If `A`.ndim > d, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2,3,4,5), a `reps` of (2,2) is treated as
(1,1,2,2).

Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
       [0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
<BLANKLINE>
       [[0, 1, 2, 0, 1, 2]]])

>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
       [3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
       [3, 4],
       [1, 2],
       [3, 4]])

>>> from numpy import *
>>> a = array([10,20])
>>> tile(a, (3,2))                             # concatenate 3x2 copies of a together
array([[10, 20, 10, 20],
[10, 20, 10, 20],
[10, 20, 10, 20]])
>>> tile(42.0, (3,2))                          # works for scalars, too
array([[ 42.,  42.],
[ 42.,  42.],
[ 42.,  42.]])
>>> tile([[1,2],[4,8]], (2,3))                 # works for 2-d arrays and list literals, too
array([[1, 2, 1, 2, 1, 2],
[4, 8, 4, 8, 4, 8],
[1, 2, 1, 2, 1, 2],
[4, 8, 4, 8, 4, 8]])

See also: hstack, vstack, r_, c_, concatenate, repeat

tofile()

ndarray.tofile(...)

a.tofile(fid, sep="", format="%s")

Write array to a file as text or binary.

Data is always written in 'C' order, independently of the order of `a`.
The data produced by this method can be recovered by using the function
fromfile().

This is a convenience function for quick storage of array data.
Information on endianess and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianess. Some of these problems can be overcome
by outputting the data as text files at the expense of speed and file size.

Parameters
----------
fid : file or string
    An open file object or a string containing a filename.
sep : string
    Separator between array items for text output.
    If "" (empty), a binary file is written, equivalently to
    file.write(a.tostring()).
format : string
    Format string for text file output.
    Each entry in the array is formatted to text by converting it to the
    closest Python type, and using "format" % item.

>>> from numpy import *
>>> x = arange(10.)
>>> y = x**2
>>> y.tofile("myfile.dat")                                 # binary format
>>> y.tofile("myfile.txt", sep=' ', format = "%e")         # ascii format, one row, exp notation, values separated by 1 space
>>> y.tofile("myfile.txt", sep='\n', format = "%e")        # ascii format, one column, exponential notation

See also: fromfile, loadtxt, savetxt

tolist()

ndarray.tolist(...)

a.tolist()

Return the array as a possibly nested list.

Return a copy of the array data as a hierarchical Python list.
Data items are converted to the nearest compatible Python type.

Parameters
----------
none

Returns
-------
y : list
    The possibly nested list of array elements.

Notes
-----
The array may be recreated, ``a = np.array(a.tolist())``.

Examples
--------
>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

>>> from numpy import *
>>> a = array([[1,2],[3,4]])
>>> a.tolist()                                 # convert to a standard python list
[[1, 2], [3, 4]]

tostring()

ndarray.tostring(...)

a.tostring(order='C')

Construct a Python string containing the raw data bytes in the array.

Parameters
----------
order : {'C', 'F', None}
    Order of the data for multidimensional arrays:
    C, Fortran, or the same as for the original array.

trace()

numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

If a is 2-d, returns the sum along the diagonal of self with the given
offset, i.e., the collection of elements of the form a[i,i+offset]. If
a has more than two dimensions, then the axes specified by axis1 and
axis2 are used to determine the 2-d subarray whose trace is returned.
The shape of the resulting array can be determined by removing axis1
and axis2 and appending an index to the right equal to the size of the
resulting diagonals.

Parameters
----------
a : array_like
    Array from whis the diagonals are taken.
offset : integer, optional
    Offset of the diagonal from the main diagonal. Can be both positive
    and negative. Defaults to main diagonal.
axis1 : integer, optional
    Axis to be used as the first axis of the 2-d subarrays from which
    the diagonals should be taken. Defaults to first axis.
axis2 : integer, optional
    Axis to be used as the second axis of the 2-d subarrays from which
    the diagonals should be taken. Defaults to second axis.
dtype : dtype, optional
    Determines the type of the returned array and of the accumulator
    where the elements are summed. If dtype has the value None and a is
    of integer type of precision less than the default integer
    precision, then the default integer precision is used. Otherwise,
    the precision is the same as that of a.
out : array, optional
    Array into which the sum can be placed. Its type is preserved and
    it must be of the right shape to hold the output.

Returns
-------
sum_along_diagonals : ndarray
    If a is 2-d, a 0-d array containing the diagonal is
    returned.  If a has larger dimensions, then an array of
    diagonals is returned.

Examples
--------
>>> np.trace(np.eye(3))
3.0
>>> a = np.arange(8).reshape((2,2,2))
>>> np.trace(a)
array([6, 8])

ndarray.trace(...)

a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

Refer to `numpy.trace` for full documentation.

See Also
--------
numpy.trace : equivalent function

>>> from numpy import *
>>> a = arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
[ 4,  5,  6,  7],
[ 8,  9, 10, 11]])
>>> a.diagonal()
array([ 0,  5, 10])
>>> a.trace()
15
>>> a.diagonal(offset=1)
array([ 1,  6, 11])
>>> a.trace(offset=1)
18

See also: diag, diagonal

transpose()

numpy.transpose(a, axes=None)

Permute the dimensions of an array.

Parameters
----------
a : array_like
    Input array.
axes : list of ints, optional
    By default, reverse the dimensions, otherwise permute the axes
    according to the values given.

Returns
-------
p : ndarray
    `a` with its axes permuted.  A view is returned whenever
    possible.

See Also
--------
rollaxis

Examples
--------
>>> x = np.arange(4).reshape((2,2))
>>> x
array([[0, 1],
       [2, 3]])

>>> np.transpose(x)
array([[0, 2],
       [1, 3]])

>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

ndarray.transpose(...)

a.transpose(*axes)

Returns a view of 'a' with axes transposed. If no axes are given,
or None is passed, switches the order of the axes. For a 2-d
array, this is the usual matrix transpose. If axes are given,
they describe how the axes are permuted.

Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> a
array([[1, 2],
       [3, 4]])
>>> a.transpose()
array([[1, 3],
       [2, 4]])
>>> a.transpose((1,0))
array([[1, 3],
       [2, 4]])
>>> a.transpose(1,0)
array([[1, 3],
       [2, 4]])

A very simple example:

>>> a = array([[1,2,3],[4,5,6]])
>>> print a.shape
(2, 3)
>>> b = a.transpose()
>>> print b
[[1 4]
[2 5]
[3 6]]
>>> print b.shape
(3, 2)

From this, a more elaborate example can be understood:

>>> a = arange(30)
>>> a = a.reshape(2,3,5)
>>> a
array([[[ 0,  1,  2,  3,  4],
[ 5,  6,  7,  8,  9],
[10, 11, 12, 13, 14]],
[[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24],
[25, 26, 27, 28, 29]]])
>>> b = a.transpose()
>>> b
array([[[ 0, 15],
[ 5, 20],
[10, 25]],
[[ 1, 16],
[ 6, 21],
[11, 26]],
[[ 2, 17],
[ 7, 22],
[12, 27]],
[[ 3, 18],
[ 8, 23],
[13, 28]],
[[ 4, 19],
[ 9, 24],
[14, 29]]])
>>> b.shape
(5, 3, 2)
>>> b = a.transpose(1,0,2)                 # First axis 1, then axis 0, then axis 2
>>> b
array([[[ 0,  1,  2,  3,  4],
[15, 16, 17, 18, 19]],
[[ 5,  6,  7,  8,  9],
[20, 21, 22, 23, 24]],
[[10, 11, 12, 13, 14],
[25, 26, 27, 28, 29]]])
>>> b.shape
(3, 2, 5)
>>> b = transpose(a, (1,0,2))              # A separate transpose() function also exists

See also: T, swapaxes, rollaxis

trapz()

numpy.trapz(y, x=None, dx=1.0, axis=-1)

Integrate along the given axis using the composite trapezoidal rule.

Integrate `y` (`x`) along given axis.

Parameters
----------
y : array_like
    Input array to integrate.
x : array_like, optional
    If `x` is None, then spacing between all `y` elements is 1.
dx : scalar, optional
    If `x` is None, spacing given by `dx` is assumed.
axis : int, optional
    Specify the axis.

Examples
--------
>>> np.trapz([1,2,3])
>>> 4.0
>>> np.trapz([1,2,3], [4,6,8])
>>> 8.0

tri()

numpy.tri(N, M=None, k=0, dtype=<type 'float'>)

Construct an array filled with ones at and below the given diagonal.

Parameters
----------
N : int
    Number of rows in the array.
M : int, optional
    Number of columns in the array.
    By default, `M` is taken equal to `N`.
k : int, optional
    The sub-diagonal below which the array is filled.
    `k` = 0 is the main diagonal, while `k` < 0 is below it,
    and `k` > 0 is above.  The default is 0.
dtype : dtype, optional
    Data type of the returned array.  The default is float.

Returns
-------
T : (N,M) ndarray
    Array with a lower triangle filled with ones, in other words
    ``T[i,j] == 1`` for ``i <= j + k``.

Examples
--------
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
       [1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1]])

>>> np.tri(3, 5, -1)
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 1.,  0.,  0.,  0.,  0.],
       [ 1.,  1.,  0.,  0.,  0.]])

>>> from numpy import *
>>> tri(3,4,k=0,dtype=float)        # 3x4 matrix of Floats, triangular, the k=0-th diagonal and below is 1, the upper part is 0
array([[ 1.,  0.,  0.,  0.],
[ 1.,  1.,  0.,  0.],
[ 1.,  1.,  1.,  0.]])
>>> tri(3,4,k=1,dtype=int)
array([[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]])

See also: tril, triu

tril()

numpy.tril(m, k=0)

Lower triangle of an array.

Return a copy of an array with elements above the `k`-th diagonal zeroed.

Parameters
----------
m : array_like, shape (M, N)
    Input array.
k : int
    Diagonal above which to zero elements.
    `k = 0` is the main diagonal, `k < 0` is below it and `k > 0` is above.

Returns
-------
L : ndarray, shape (M, N)
    Lower triangle of `m`, of same shape and data-type as `m`.

See Also
--------
triu

Examples
--------
>>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0,  0,  0],
       [ 4,  0,  0],
       [ 7,  8,  0],
       [10, 11, 12]])

>>> from numpy import *
>>> a = arange(10,100,10).reshape(3,3)
>>> a
array([[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
>>> tril(a,k=0)
array([[10,  0,  0],
[40, 50,  0],
[70, 80, 90]])
>>> tril(a,k=1)
array([[10, 20,  0],
[40, 50, 60],
[70, 80, 90]])

See also: tri, triu

trim_zeros()

numpy.trim_zeros(filt, trim='fb')

Trim the leading and trailing zeros from a 1D array.

Parameters
----------
filt : array_like
    Input array.
trim : string, optional
    A string with 'f' representing trim from front and 'b' to trim from
    back.

Examples
--------
>>> a = np.array((0, 0, 0, 1, 2, 3, 2, 1, 0))
>>> np.trim_zeros(a)
array([1, 2, 3, 2, 1])

>>> from numpy import *
>>> x = array([0, 0, 0, 1, 2, 3, 0, 0])
>>> trim_zeros(x,'f')                                 # remove zeros at the front
array([1, 2, 3, 0, 0])
>>> trim_zeros(x,'b')                                 # remove zeros at the back
array([0, 0, 0, 1, 2, 3])
>>> trim_zeros(x,'bf')                               # remove zeros at the back and the front
array([1, 2, 3])

See also: compress

triu()

numpy.triu(m, k=0)

Upper triangle of an array.

Construct a copy of a matrix with elements below the k-th diagonal zeroed.

Please refer to the documentation for `tril`.

See Also
--------
tril

Examples
--------
>>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1,  2,  3],
       [ 4,  5,  6],
       [ 0,  8,  9],
       [ 0,  0, 12]])

>>> from numpy import *
>>> a = arange(10,100,10).reshape(3,3)
>>> a
array([[10, 20, 30],
[40, 50, 60],
[70, 80, 90]])
>>> triu(a,k=0)
array([[10, 20, 30],
[ 0, 50, 60],
[ 0,  0, 90]])
>>> triu(a,k=1)
array([[ 0, 20, 30],
[ 0,  0, 60],
[ 0,  0,  0]])

See also: tri, tril

true_divide()

numpy.true_divide(...)

y = true_divide(x1,x2)

Returns an element-wise, true division of the inputs.

Instead of the Python traditional 'floor division', this returns a true
division.  True division adjusts the output type to present the best
answer, regardless of input types.

Parameters
----------
x1 : array_like
    Dividend
x2 : array_like
    Divisor

Returns
-------
out : ndarray
    Result is scalar if both inputs are scalar, ndarray otherwise.

Notes
-----
The floor division operator ('//') was added in Python 2.2 making '//'
and '/' equivalent operators.  The default floor division operation of
'/' can be replaced by true division with
'from __future__ import division'.

In Python 3.0, '//' will be the floor division operator and '/' will be
the true division operator.  The 'true_divide(`x1`, `x2`)' function is
equivalent to true division in Python.

typeDict

numpy.typeDict

dict() -> new empty dictionary.
dict(mapping) -> new dictionary initialized from a mapping object's
    (key, value) pairs.
dict(seq) -> new dictionary initialized as if via:
    d = {}
    for k, v in seq:
        d[k] = v
dict(**kwargs) -> new dictionary initialized with the name=value pairs
    in the keyword argument list.  For example:  dict(one=1, two=2)

>>> from numpy import *
>>> typeDict['short']
<type 'numpy.int16'>
>>> typeDict['uint16']
<type 'numpy.uint16'>
>>> typeDict['void']
<type 'numpy.void'>
>>> typeDict['S']
<type 'numpy.string_'>

See also: dtype, cast

typename()

numpy.typename(char)

Return a description for the given data type code.

Parameters
----------
char : str
    Data type code.

Returns
-------
out : str
    Description of the input data type code.

See Also
--------
typecodes
dtype

uniform()

numpy.random.uniform(...)

uniform(low=0.0, high=1.0, size=1)

Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval
``[low, high)`` (includes low, but excludes high).  In other words,
any value within the given interval is equally likely to be drawn
by `uniform`.

Parameters
----------
low : float, optional
    Lower boundary of the output interval.  All values generated will be
    greater than or equal to low.  The default value is 0.
high : float
    Upper boundary of the output interval.  All values generated will be
    less than high.  The default value is 1.0.
size : tuple of ints, int, optional
    Shape of output.  If the given size is, for example, (m,n,k),
    m*n*k samples are generated.  If no shape is specified, a single sample
    is returned.

Returns
-------
out : ndarray
    Drawn samples, with shape `size`.

See Also
--------
randint : Discrete uniform distribution, yielding integers.
random_integers : Discrete uniform distribution over the closed interval
                  ``[low, high]``.
random_sample : Floats uniformly distributed over ``[0, 1)``.
random : Alias for `random_sample`.
rand : Convenience function that accepts dimensions as input, e.g.,
       ``rand(2,2)`` would generate a 2-by-2 array of floats, uniformly
       distributed over ``[0, 1)``.

Notes
-----
The probability density function of the uniform distribution is

.. math:: p(x) = \frac{1}{b - a}

anywhere within the interval ``[a, b)``, and zero elsewhere.

Examples
--------
Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000)

All values are within the given interval:

>>> np.all(s >= -1)
True

>>> np.all(s < 0)
True

Display the histogram of the samples, along with the
probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 15, normed=True)
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
>>> plt.show()

>>> from numpy import *
>>> from numpy.random import *
>>> uniform(low=0,high=10,size=(2,3))       # uniform numbers in range [0,10)
array([[ 6.66689951,  4.50623001,  4.69973967],
[ 6.52977732,  3.24688284,  5.01917021]])

See also: standard_normal, poisson, seed

union1d()

numpy.union1d(ar1, ar2)

Union of 1D arrays with unique elements.

Use unique1d() to generate arrays with only unique elements to use as
inputs to this function.

Parameters
----------
ar1 : array_like, shape(M,)
    Input array.
ar2 : array_like, shape(N,)
    Input array.

Returns
-------
union : ndarray
    Unique union of input arrays.

See also
--------
numpy.lib.arraysetops : Module with a number of other functions for
                        performing set operations on arrays.

unique()

numpy.unique(x)

Return the sorted, unique elements of an array or sequence.

Parameters
----------
x : array_like
    Input array.

Returns
-------
y : ndarray
    The sorted, unique elements are returned in a 1-D array.

Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])

>>> from numpy import *
>>> x = array([2,3,2,1,0,3,4,0])
>>> unique(x)                                          # remove double values
array([0, 1, 2, 3, 4])

See also: compress, unique1d

unique1d()

numpy.unique1d(ar1, return_index=False, return_inverse=False)

Find the unique elements of an array.

Parameters
----------
ar1 : array_like
    This array will be flattened if it is not already 1-D.
return_index : bool, optional
    If True, also return the indices against `ar1` that result in the
    unique array.
return_inverse : bool, optional
    If True, also return the indices against the unique array that
    result in `ar1`.

Returns
-------
unique : ndarray
    The unique values.
unique_indices : ndarray, optional
    The indices of the unique values. Only provided if `return_index` is
    True.
unique_inverse : ndarray, optional
    The indices to reconstruct the original array. Only provided if
    `return_inverse` is True.

See Also
--------
numpy.lib.arraysetops : Module with a number of other functions
                        for performing set operations on arrays.

Examples
--------
>>> np.unique1d([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique1d(a)
array([1, 2, 3])

Reconstruct the input from unique values:

>>> np.unique1d([1,2,6,4,2,3,2], return_index=True)
>>> x = [1,2,6,4,2,3,2]
>>> u, i = np.unique1d(x, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> i
array([0, 1, 4, 3, 1, 2, 1])
>>> [u[p] for p in i]
[1, 2, 6, 4, 2, 3, 2]

>>> np.unique1d([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique1d(a)
array([1, 2, 3])
>>> np.unique1d([1,2,6,4,2,3,2], return_index=True)
(array([1, 2, 3, 4, 6]), array([0, 1, 5, 3, 2]))
>>> x = [1,2,6,4,2,3,2]
>>> u, i = np.unique1d(x, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> i
array([0, 1, 4, 3, 1, 2, 1])
>>> [u[p] for p in i]
[1, 2, 6, 4, 2, 3, 2]

See also: compress, unique

unpackbits()

numpy.unpackbits(...)

out = numpy.unpackbits(myarray, axis=None)

myarray - array of uint8 type where each element represents a bit-field
   that should be unpacked into a boolean output array

   The shape of the output array is either 1-d (if axis is None) or
   the same shape as the input array with unpacking done along the
   axis specified.

unravel_index()

numpy.unravel_index(x, dims)

Convert a flat index into an index tuple for an array of given shape.

Parameters
----------
x : int
    Flattened index.
dims : shape tuple
    Input shape.

Notes
-----
In the Examples section, since ``arr.flat[x] == arr.max()`` it may be
easier to use flattened indexing than to re-map the index to a tuple.

Examples
--------
>>> arr = np.ones((5,4))
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])
>>> x = arr.argmax()
>>> x
19
>>> dims = arr.shape
>>> idx = np.unravel_index(x, dims)
>>> idx
(4, 3)
>>> arr[idx] == arr.max()
True

unwrap()

numpy.unwrap(p, discont=3.1415926535897931, axis=-1)

Unwrap by changing deltas between values to 2*pi complement.

Unwrap radian phase `p` by changing absolute jumps greater than
`discont` to their 2*pi complement along the given axis.

Parameters
----------
p : array_like
    Input array.
discont : float
    Maximum discontinuity between values.
axis : integer
    Axis along which unwrap will operate.

Returns
-------
out : ndarray
    Output array

vander()

numpy.vander(x, N=None)

Generate a Van der Monde matrix.

The columns of the output matrix are decreasing powers of the input
vector.  Specifically, the i-th output column is the input vector to
the power of ``N - i - 1``.

Parameters
----------
x : array_like
    Input array.
N : int, optional
    Order of (number of columns in) the output.

Returns
-------
out : ndarray
    Van der Monde matrix of order `N`.  The first column is ``x^(N-1)``,
    the second ``x^(N-2)`` and so forth.

Examples
--------
>>> x = np.array([1, 2, 3, 5])
>>> N = 3
>>> np.vander(x, N)
array([[ 1,  1,  1],
       [ 4,  2,  1],
       [ 9,  3,  1],
       [25,  5,  1]])

>>> np.column_stack([x**(N-1-i) for i in range(N)])
array([[ 1,  1,  1],
       [ 4,  2,  1],
       [ 9,  3,  1],
       [25,  5,  1]])

>>> from numpy import *
>>> x = array([1,2,3,5])
>>> N=3
>>> vander(x,N)                                        # Vandermonde matrix of the vector x
array([[ 1,  1,  1],
[ 4,  2,  1],
[ 9,  3,  1],
[25,  5,  1]])
>>> column_stack([x**(N-1-i) for i in range(N)])     # to understand what a Vandermonde matrix contains
array([[ 1,  1,  1],
[ 4,  2,  1],
[ 9,  3,  1],
[25,  5,  1]])

var()

numpy.var(a, axis=None, dtype=None, out=None, ddof=0)

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a
distribution. The variance is computed for the flattened array by default,
otherwise over the specified axis.

Parameters
----------
a : array_like
    Array containing numbers whose variance is desired. If `a` is not an
    array, a conversion is attempted.
axis : int, optional
    Axis along which the variance is computed. The default is to compute
    the variance of the flattened array.
dtype : dtype, optional
    Type to use in computing the variance. For arrays of integer type
    the default is float32; for arrays of float types it is the same as
    the array type.
out : ndarray, optional
    Alternative output array in which to place the result. It must have
    the same shape as the expected output but the type is cast if
    necessary.
ddof : positive int,optional
    "Delta Degrees of Freedom": the divisor used in calculation is
    N - ddof.

Returns
-------
variance : ndarray, see dtype parameter above
    If out=None, returns a new array containing the variance; otherwise
    a reference to the output array is returned.

See Also
--------
std : Standard deviation
mean : Average

Notes
-----
The variance is the average of the squared deviations from the mean,
i.e.,  var = mean(abs(x - x.mean())**2).  The computed variance is biased,
i.e., the mean is computed by dividing by the number of elements, N,
rather than by N-1. Note that for complex numbers the absolute value is
taken before squaring, so that the result is always real and nonnegative.

Examples
--------
>>> a = np.array([[1,2],[3,4]])
>>> np.var(a)
1.25
>>> np.var(a,0)
array([ 1.,  1.])
>>> np.var(a,1)
array([ 0.25,  0.25])

ndarray.var(...)

a.var(axis=None, dtype=None, out=None, ddof=0)

Returns the variance of the array elements, along given axis.

Refer to `numpy.var` for full documentation.

See Also
--------
numpy.var : equivalent function

>>> from numpy import *
>>> a = array([1,2,7])
>>> a.var()                                   # normalised with N (not N-1)
6.8888888888888875
>>> a = array([[1,2,7],[4,9,6]])
>>> a.var()
7.8055555555555571
>>> a.var(axis=0)                             # the variance of each of the 3 columns
array([  2.25,  12.25,   0.25])
>>> a.var(axis=1)                             # the variance of each of the 2 rows
array([ 6.88888889,  4.22222222])

See also: cov, std, mean

vdot()

numpy.vdot(...)

vdot(a,b)
Returns the dot product of a and b for scalars and vectors
of floating point and complex types.  The first argument, a, is conjugated.

>>> from numpy import *
>>> x = array([1+2j,3+4j])
>>> y = array([5+6j,7+8j])
>>> vdot(x,y)                          # conj(x) * y = (1-2j)*(5+6j)+(3-4j)*(7+8j)
(70-8j)

See also: dot, inner, cross, outer

vectorize()

numpy.vectorize(...)

vectorize(somefunction, otypes=None, doc=None)

Generalized function class.

Define a vectorized function which takes nested sequence
of objects or numpy arrays as inputs and returns a
numpy array as output, evaluating the function over successive
tuples of the input arrays like the python map function except it uses
the broadcasting rules of numpy.

Data-type of output of vectorized is determined by calling the function
with the first element of the input.  This can be avoided by specifying
the otypes argument as either a string of typecode characters or a list
of data-types specifiers.  There should be one data-type specifier for
each output.

Parameters
----------
f : callable
  A Python function or method.

Examples
--------
>>> def myfunc(a, b):
...    if a > b:
...        return a-b
...    else:
...        return a+b

>>> vfunc = np.vectorize(myfunc)

>>> vfunc([1, 2, 3, 4], 2)
array([3, 4, 1, 2])

>>> from numpy import *
>>> def myfunc(x):
...   if x >= 0: return x**2
...   else: return -x
...
>>> myfunc(2.)                                               # works fine
4.0
>>> myfunc(array([-2,2]))                                    # doesn't work, try it...
<snip>
>>> vecfunc = vectorize(myfunc, otypes=[float])              # declare the return type as float
>>> vecfunc(array([-2,2]))                                   # works fine!
array([ 2.,  4.])

See also: apply_along_axis, apply_over_axes

view()

ndarray.view(...)

a.view(dtype=None, type=None)

New view of array with the same data.

Parameters
----------
dtype : data-type
    Data-type descriptor of the returned view, e.g. float32 or int16.
type : python type
    Type of the returned view, e.g. ndarray or matrix.

Examples
--------
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> print y.dtype
int16

>>> print type(y)
<class 'numpy.core.defmatrix.matrix'>

Using a view to convert an array to a record array:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

>>> from numpy import *
>>> a = array([1., 2.])
>>> a.view()                                                                    # new array referring to the same data as 'a'
array([ 1.,  2.])
>>> a.view(complex)                                                             # pretend that a is made up of complex numbers
array([ 1.+2.j])
>>> a.view(int)                                                                 # view(type) is NOT the same as astype(type)!
array([         0, 1072693248,          0, 1073741824])
>>>
>>> mydescr = dtype({'names': ['gender','age'], 'formats': ['S1', 'i2']})
>>> a = array([('M',25),('F',30)], dtype = mydescr)                             # array with records
>>> b = a.view(recarray)                                                        # convert to a record array, names are now attributes
>>> >>> a['age']                                                                # works with 'a' but not with 'b'
array([25, 30], dtype=int16)
>>> b.age                                                                       # works with 'b' but not with 'a'
array([25, 30], dtype=int16)

See also: copy

vonmises()

numpy.random.vonmises(...)

vonmises(mu=0.0, kappa=1.0, size=None)

Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu)
and dispersion (kappa), on the interval [-pi, pi].

The von Mises distribution (also known as the circular normal
distribution) is a continuous probability distribution on the circle. It
may be thought of as the circular analogue of the normal distribution.

Parameters
----------
mu : float
    Mode ("center") of the distribution.
kappa : float, >= 0.
    Dispersion of the distribution.
size : {tuple, int}
    Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
    ``m * n * k`` samples are drawn.

Returns
-------
samples : {ndarray, scalar}
    The returned samples live on the unit circle [-\pi, \pi].

See Also
--------
scipy.stats.distributions.vonmises : probability density function,
    distribution or cumulative density function, etc.

Notes
-----
The probability density for the von Mises distribution is

.. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

The von Mises, named for Richard Edler von Mises, born in
Austria-Hungary, in what is now the Ukraine. He fled to the United
States in 1939 and became a professor at Harvard. He worked in
probability theory, aerodynamics, fluid mechanics, and philosophy of
science.

References
----------
.. [1] Abramowitz, M. and Stegun, I. A. (ed.), Handbook of Mathematical
       Functions, National Bureau of Standards, 1964; reprinted Dover
       Publications, 1965.
.. [2] von Mises, Richard, 1964, Mathematical Theory of Probability
       and Statistics (New York: Academic Press).
.. [3] Wikipedia, "Von Mises distribution",
       http://en.wikipedia.org/wiki/Von_Mises_distribution

Examples
--------
Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion
>>> s = np.random.vonmises(mu, kappa, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> import scipy.special as sps
>>> count, bins, ignored = plt.hist(s, 50, normed=True)
>>> x = arange(-pi, pi, 2*pi/50.)
>>> y = -np.exp(kappa*np.cos(x-mu))/(2*pi*sps.jn(0,kappa))
>>> plt.plot(x, y/max(y), linewidth=2, color='r')
>>> plt.show()

>>> from numpy import *
>>> from numpy.random import *
>>> vonmises(mu=1,kappa=1,size=(2,3))           # Von Mises distribution mean=1.0, kappa=1
array([[ 0.81960554,  1.37470839, -0.15700173],
[ 1.2974554 ,  2.94229797,  0.32462307]])
>>> from pylab import *                         # histogram plot example
>>> hist(vonmises(1,1,(10000)), 50)

See also: random_sample, uniform, standard_normal, seed

vsplit()

numpy.vsplit(ary, indices_or_sections)

Split array into multiple sub-arrays vertically.

Please refer to the `numpy.split` documentation.

See Also
--------
numpy.split : The default behaviour of this function implements
              `vsplit`.

>>> from numpy import *
>>> a = array([[1,2],[3,4],[5,6],[7,8]])
>>> vsplit(a,2)                                                # split, row-wise, in 2 equal parts
[array([[1, 2],
[3, 4]]), array([[5, 6],
[7, 8]])]
>>> vsplit(a,[1,2])                                           # split, row-wise, before row 1 and before row 2
[array([[1, 2]]), array([[3, 4]]), array([[5, 6],
[7, 8]])]

See also: split, array_split, dsplit, hsplit, vstack

vstack()

numpy.vstack(tup)

Stack arrays vertically.

`vstack` can be used to rebuild arrays divided by `vsplit`.

Parameters
----------
tup : sequence of arrays
    Tuple containing arrays to be stacked.  The arrays must have the same
    shape along all but the first axis.

See Also
--------
array_split : Split an array into a list of multiple sub-arrays of
              near-equal size.
split : Split array into a list of multiple sub-arrays of equal size.
vsplit : Split array into a list of multiple sub-arrays vertically.
dsplit : Split array into a list of multiple sub-arrays along the 3rd axis
         (depth).
concatenate : Join arrays together.
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).

Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
       [2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
       [2],
       [3],
       [2],
       [3],
       [4]])

>>> from numpy import *
>>> a =array([1,2])
>>> b = array([[3,4],[5,6]])
>>> vstack((a,b,a))                  # only the first dimension of the arrays is allowed to be different
array([[1, 2],
[3, 4],
[5, 6],
[1, 2]])

See also: hstack, column_stack, concatenate, dstack, vsplit

weibull()

numpy.random.weibull(...)

weibull(a, size=None)

Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given
shape parameter.

.. math:: X = (-ln(U))^{1/a}

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter
:math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

The Weibull (or Type III asymptotic extreme value distribution for smallest
values, SEV Type III, or Rosin-Rammler distribution) is one of a class of
Generalized Extreme Value (GEV) distributions used in modeling extreme
value problems.  This class includes the Gumbel and Frechet distributions.

Parameters
----------
a : float
    Shape of the distribution.
size : tuple of ints
    Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
    ``m * n * k`` samples are drawn.

See Also
--------
scipy.stats.distributions.weibull : probability density function,
    distribution or cumulative density function, etc.

gumbel, scipy.stats.distributions.genextreme

Notes
-----
The probability density for the Weibull distribution is

.. math:: p(x) = \frac{a}
                 {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

where :math:`a` is the shape and :math:`\lambda` the scale.

The function has its peak (the mode) at
:math:`\lambda(\frac{a-1}{a})^{1/a}`.

When ``a = 1``, the Weibull distribution reduces to the exponential
distribution.

References
----------
.. [1] Waloddi Weibull, Professor, Royal Technical University, Stockholm,
       1939 "A Statistical Theory Of The Strength Of Materials",
       Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
       Generalstabens Litografiska Anstalts Forlag, Stockholm.
.. [2] Waloddi Weibull, 1951 "A Statistical Distribution Function of Wide
       Applicability",  Journal Of Applied Mechanics ASME Paper.
.. [3] Wikipedia, "Weibull distribution",
       http://en.wikipedia.org/wiki/Weibull_distribution

Examples
--------
Draw samples from the distribution:

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

Display the histogram of the samples, along with
the probability density function:

>>> import matplotlib.pyplot as plt
>>> def weib(x,n,a):
...     return (a/n)*(x/n)**(a-1)*exp(-(x/n)**a)

>>> count, bins, ignored = plt.hist(numpy.random.weibull(5.,1000))
>>> scale = count.max()/weib(x, 1., 5.).max()
>>> x = arange(1,100.)/50.
>>> plt.plot(x, weib(x, 1., 5.)*scale)
>>> plt.show()

>>> from numpy import *
>>> from numpy.random import *
>>> weibull(a=1,size=(2,3))                     # I think a is the shape parameter
array([[ 0.08303065,  3.41486412,  0.67430149],
[ 0.41383893,  0.93577601,  0.45431195]])
>>> from pylab import *                         # histogram plot example
>>> hist(weibull(5, (1000)), 50)

See also: random_sample, uniform, standard_normal, seed

where()

numpy.where(...)

where(condition, [x, y])

Return elements, either from `x` or `y`, depending on `condition`.

If only `condition` is given, return ``condition.nonzero()``.

Parameters
----------
condition : array_like, bool
    When True, yield `x`, otherwise yield `y`.
x, y : array_like, optional
    Values from which to choose.

Returns
-------
out : ndarray or tuple of ndarrays
    If both `x` and `y` are specified, the output array, shaped like
    `condition`, contains elements of `x` where `condition` is True,
    and elements from `y` elsewhere.

    If only `condition` is given, return the tuple
    ``condition.nonzero()``, the indices where `condition` is True.

See Also
--------
nonzero, choose

Notes
-----
If `x` and `y` are given and input arrays are 1-D, `where` is
equivalent to::

    [xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

Examples
--------
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )]               # Note: result is 1D.
array([ 4.,  5.,  6.,  7.,  8.])
>>> np.where(x < 5, x, -1)               # Note: broadcasting.
array([[ 0.,  1.,  2.],
       [ 3.,  4., -1.],
       [-1., -1., -1.]])

>>> np.where([[True, False], [True, True]],
...          [[1, 2], [3, 4]],
...          [[9, 8], [7, 6]])
array([[1, 8],
       [3, 4]])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

>>> from numpy import *
>>> a = array([3,5,7,9])
>>> b = array([10,20,30,40])
>>> c = array([2,4,6,8])
>>> where(a <= 6, b, c)
array([10, 20,  6,  8])
>>> where(a <= 6, b, -1)
array([10, 20, -1, -1])
>>> indices = where(a <= 6)                                    # returns a tuple; the array contains indices.
>>> indices
(array([0, 1]),)
>>> b[indices]
array([10, 20])
>>> b[a <= 6]                                                  # an alternative syntax
array([10, 20])
>>> d = array([[3,5,7,9],[2,4,6,8]])
>>> where(d <= 6)                                              # tuple with first all the row indices, then all the column indices
(array([0, 0, 1, 1, 1]), array([0, 1, 0, 1, 2]))

Be aware of the difference between x[list of bools] and x[list of integers]!

>>> from numpy import *
>>> x = arange(5,0,-1)
>>> print x
[5 4 3 2 1]
>>> criterion = (x <= 2) | (x >= 5)
>>> criterion
array([True, False, False, True, True], dtype=bool)
>>> indices = where(criterion, 1, 0)
>>> print indices
[1 0 0 1 1]
>>> x[indices]                                                 # integers!
array([4, 5, 5, 4, 4])
>>> x[criterion]                                               # bools!
array([5, 2, 1])
>>> indices = where(criterion)
>>> print indices
(array([0, 3, 4]),)
>>> x[indices]
array([5, 2, 1])

See also: [], nonzero, clip

who()

numpy.who(vardict=None)

Print the Numpy arrays in the given dictionary.

If there is no dictionary passed in or `vardict` is None then returns
Numpy arrays in the globals() dictionary (all Numpy arrays in the
namespace).

Parameters
----------
vardict : dict, optional
    A dictionary possibly containing ndarrays.  Default is globals().

Returns
-------
out : None
    Returns 'None'.

Notes
-----
Prints out the name, shape, bytes and type of all of the ndarrays present
in `vardict`.

Examples
--------
>>> d = {'x': arange(2.0), 'y': arange(3.0), 'txt': 'Some str', 'idx': 5}
>>> np.whos(d)
Name            Shape            Bytes            Type
===========================================================
<BLANKLINE>
y               3                24               float64
x               2                16               float64
<BLANKLINE>
Upper bound on total bytes  =       40

zeros()

numpy.zeros(...)

zeros(shape, dtype=float, order='C')

Return a new array of given shape and type, filled with zeros.

Parameters
----------
shape : {tuple of ints, int}
    Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
    The desired data-type for the array, e.g., `numpy.int8`.  Default is
    `numpy.float64`.
order : {'C', 'F'}, optional
    Whether to store multidimensional data in C- or Fortran-contiguous
    (row- or column-wise) order in memory.

Returns
-------
out : ndarray
    Array of zeros with the given shape, dtype, and order.

See Also
--------
numpy.zeros_like : Return an array of zeros with shape and type of input.
numpy.ones_like : Return an array of ones with shape and type of input.
numpy.empty_like : Return an empty array with shape and type of input.
numpy.ones : Return a new array setting values to one.
numpy.empty : Return a new uninitialized array.

Examples
--------
>>> np.zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])

>>> np.zeros((5,), dtype=numpy.int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[ 0.],
       [ 0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[ 0.,  0.],
       [ 0.,  0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')])
array([(0, 0), (0, 0)],
      dtype=[('x', '<i4'), ('y', '<i4')])

>>> from numpy import *
>>> zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])
>>> zeros((2,3), int)
array([[0, 0, 0],
[0, 0, 0]])

See also: zeros_like, ones, empty, eye, identity

zeros_like()

numpy.zeros_like(a)

Returns an array of zeros with the same shape and type as a given array.

Equivalent to ``a.copy().fill(0)``.

Parameters
----------
a : array_like
    The shape and data-type of `a` defines the parameters of
    the returned array.

Returns
-------
out : ndarray
    Array of zeros with same shape and type as `a`.

See Also
--------
numpy.ones_like : Return an array of ones with shape and type of input.
numpy.empty_like : Return an empty array with shape and type of input.
numpy.zeros : Return a new array setting values to zero.
numpy.ones : Return a new array setting values to one.
numpy.empty : Return a new uninitialized array.

Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
       [0, 0, 0]])

>>> from numpy import *
>>> a = array([[1,2,3],[4,5,6]])
>>> zeros_like(a)                                      # with zeros initialised array with the same shape and datatype as 'a'
array([[0, 0, 0],
[0, 0, 0]])

See also: ones_like, zeros


SciPy: Numpy_Example_List_With_Doc (last edited 2015-10-24 17:48:25 by anonymous)