This is an archival dump of old wiki content --- see scipy.org for current material.
Please see http://scipy-cookbook.readthedocs.org/

Modeling a Zombie Apocalypse

This example demonstrates how to solve a system of first order ODEs using SciPy. Note that a Nth order equation can also be solved using SciPy by transforming it into a system of first order equations. In a this lighthearted example, a system of ODEs can be used to model a "zombie invasion", using the equations specified in Munz et al. 2009.

The system is given as:

dS/dt = P - B*S*Z - d*S
dZ/dt = B*S*Z + G*R - A*S*Z
dR/dt = d*S + A*S*Z - G*R

with the following notations:

This involves solving a system of first order ODEs given by: dy/dt = f(y, t)

Where y = [S, Z, R].

The code used to solve this system is below:

   1 # zombie apocalypse modeling
   2 import numpy as np
   3 import matplotlib.pyplot as plt
   4 from scipy.integrate import odeint
   5 plt.ion()
   6 
   7 P = 0       # birth rate
   8 d = 0.0001  # natural death percent (per day)
   9 B = 0.0095  # transmission percent  (per day)
  10 G = 0.0001  # resurect percent (per day)
  11 A = 0.0001  # destroy percent  (per day)
  12 
  13 # solve the system dy/dt = f(y, t)
  14 def f(y, t):
  15         Si = y[0]
  16         Zi = y[1]
  17         Ri = y[2]
  18         # the model equations (see Munz et al. 2009)
  19         f0 = P - B*Si*Zi - d*Si
  20         f1 = B*Si*Zi + G*Ri - A*Si*Zi
  21         f2 = d*Si + A*Si*Zi - G*Ri
  22         return [f0, f1, f2]
  23 
  24 # initial conditions
  25 S0 = 500.               # initial population
  26 Z0 = 0                  # initial zombie population
  27 R0 = 0                  # initial death population
  28 y0 = [S0, Z0, R0]       # initial condition vector
  29 t  = np.linspace(0, 5., 1000)   # time grid
  30 
  31 # solve the DEs
  32 soln = odeint(f, y0, t)
  33 S = soln[:, 0]
  34 Z = soln[:, 1]
  35 R = soln[:, 2]
  36 
  37 # plot results
  38 plt.figure()
  39 plt.plot(t, S, label='Living')
  40 plt.plot(t, Z, label='Zombies')
  41 plt.xlabel('Days from outbreak')
  42 plt.ylabel('Population')
  43 plt.title('Zombie Apocalypse - No Init. Dead Pop.; No New Births.')
  44 plt.legend(loc=0)
  45 
  46 # change the initial conditions
  47 R0 = 0.01*S0   # 1% of initial pop is dead
  48 y0 = [S0, Z0, R0]
  49 
  50 # solve the DEs
  51 soln = odeint(f, y0, t)
  52 S = soln[:, 0]
  53 Z = soln[:, 1]
  54 R = soln[:, 2]
  55 
  56 plt.figure()
  57 plt.plot(t, S, label='Living')
  58 plt.plot(t, Z, label='Zombies')
  59 plt.xlabel('Days from outbreak')
  60 plt.ylabel('Population')
  61 plt.title('Zombie Apocalypse - 1% Init. Pop. is Dead; No New Births.')
  62 plt.legend(loc=0)
  63 
  64 # change the initial conditions
  65 R0 = 0.01*S0   # 1% of initial pop is dead
  66 P  = 10        # 10 new births daily
  67 y0 = [S0, Z0, R0]
  68 
  69 # solve the DEs
  70 soln = odeint(f, y0, t)
  71 S = soln[:, 0]
  72 Z = soln[:, 1]
  73 R = soln[:, 2]
  74 
  75 plt.figure()
  76 plt.plot(t, S, label='Living')
  77 plt.plot(t, Z, label='Zombies')
  78 plt.xlabel('Days from outbreak')
  79 plt.ylabel('Population')
  80 plt.title('Zombie Apocalypse - 1% Init. Pop. is Dead; 10 Daily Births')
  81 plt.legend(loc=0)

zombie_nodead_nobirths.png

zombie_somedead_nobirth.png

zombie_somedead_10birth.png

SciPy: Cookbook/Zombie_Apocalypse_ODEINT (last edited 2015-10-24 17:48:24 by anonymous)