This is an archival dump of old wiki content --- see scipy.org for current material.
Please see http://scipy-cookbook.readthedocs.org/

MetaArray

MetaArray is a class that extends ndarray, adding support for per-axis meta data storage. This class is useful for storing data arrays along with units, axis names, column names, axis values, etc. MetaArray objects can be indexed and sliced arbitrarily using named axes and columns.

Download here: MetaArray.py

Example Uses

Here is an example of the type of data one might store with MetaArray:

example.png

Notice that each axis is named and can store different types of meta information:

Data from this array can be accessed many different ways:

data[0, 1, 1]
data[:, "Voltage 1", 0]
data["Trial":1, "Signal":"Voltage 0"]
data["Time":slice(3,7)]

Features

Documentation

Instantiation

 # Constructs MetaArray from a preexisting ndarray and info list
MetaArray(ndarray, info)

 # Constructs MetaArray using empty(shape, dtype=type) and info list
MetaArray((shape), dtype=type, info)

 # Constructs MetaArray from file written using MetaArray.write()
MetaArray(file='fileName')

    info=[axis1, axis2, axis3...]

  MetaArray((3, 6, 3), dtype=float, info=[
    {"name": "Signal", "cols": [
        {"name": "Voltage 0", "units": "V"},
        {"name": "Voltage 1", "units": "V"},
        {"name": "Current 0", "units": "A"}
      ]
    },
    {"name": "Time", "units": "msec", "values":[0.0, 0.1, 0.2, 0.3, 0.4, 0.5] },
    {"name": "Trial"},
    {"note": "Just some extra info"}
  ]

Accessing Data

Data can be accessed through a variety of methods:

  data["AxisName":index]
  data["AxisName":slice(...)]

  data["AxisName":"ColumnName"]
  data["ColumnName"]  ## Works only if the named column exists for this axis
  data[["ColumnName1", "ColumnName2"]]

  sel = data["ColumnName", 0, 0] > 0.2
  data[sel]

File I/O

  data.write('fileName')
  newData = MetaArray(file='fileName')

Performance Tips

MetaArray is a subclass of ndarray which overrides the __getitem__ and __setitem__ methods. Since these methods must alter the structure of the meta information for each access, they are quite slow compared to the native methods. As a result, many builtin functions will run very slowly when operating on a MetaArray. It is recommended, therefore, that you recast your arrays before performing these operations like this:

  data = MetaArray(...)
  data.mean()                ## Very slow
  data.view(ndarray).mean()  ## native speed  

More Examples

      info=[
        {'name': 'lat', 'title': 'Latitude'}, 
        {'name': 'lon', 'title': 'Longitude'}, 
        {'title': 'Altitude', 'units': 'm'}
      ]

      array[10, 5]
      array['lon':5, 'lat':10]
      array['lat':10][5]

      info=[
        {'name': 'vals', 'cols': [
          {'name': 'altitude', 'units': 'm'}, 
          {'name': 'rainfall', 'units': 'cm/year'}
        ]},
        {'name': 'lat', 'title': 'Latitude'}, 
        {'name': 'lon', 'title': 'Longitude'}
      ]

      array[1, 10, 5]
      array['lon':5, 'lat':10, 'val': 'rainfall']
      array['rainfall', 'lon':5, 'lat':10]

Contact

Luke Campagnola - lcampagn@email.unc.edu


CategoryCookbook

SciPy: Cookbook/MetaArray (last edited 2015-10-24 17:48:26 by anonymous)