minimize(method=’CG’)#
- scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
Minimization of scalar function of one or more variables using the conjugate gradient algorithm.
See also
For documentation for the rest of the parameters, see
scipy.optimize.minimize
- Options:
- ——-
- dispbool
Set to True to print convergence messages.
- maxiterint
Maximum number of iterations to perform.
- gtolfloat
Gradient norm must be less than gtol before successful termination.
- normfloat
Order of norm (Inf is max, -Inf is min).
- epsfloat or ndarray
If jac is None the absolute step size used for numerical approximation of the jacobian via forward differences.
- return_allbool, optional
Set to True to return a list of the best solution at each of the iterations.
- finite_diff_rel_stepNone or array_like, optional
If
jac in ['2-point', '3-point', 'cs']
the relative step size to use for numerical approximation of the jacobian. The absolute step size is computed ash = rel_step * sign(x) * max(1, abs(x))
, possibly adjusted to fit into the bounds. Forjac='3-point'
the sign of h is ignored. If None (default) then step is selected automatically.- c1float, default: 1e-4
Parameter for Armijo condition rule.
- c2float, default: 0.4
Parameter for curvature condition rule.
- workersint, map-like callable, optional
A map-like callable, such as multiprocessing.Pool.map for evaluating any numerical differentiation in parallel. This evaluation is carried out as
workers(fun, iterable)
.Added in version 1.16.0.
Notes
Parameters c1 and c2 must satisfy
0 < c1 < c2 < 1
.