MultivariateNormalQMC#
- class scipy.stats.qmc.MultivariateNormalQMC(mean, cov=None, *, cov_root=None, inv_transform=True, engine=None, rng=None)[source]#
QMC sampling from a multivariate Normal \(N(\mu, \Sigma)\).
- Parameters:
- meanarray_like (d,)
The mean vector. Where
d
is the dimension.- covarray_like (d, d), optional
The covariance matrix. If omitted, use cov_root instead. If both cov and cov_root are omitted, use the identity matrix.
- cov_rootarray_like (d, d’), optional
A root decomposition of the covariance matrix, where
d'
may be less thand
if the covariance is not full rank. If omitted, use cov.- inv_transformbool, optional
If True, use inverse transform instead of Box-Muller. Default is True.
- engineQMCEngine, optional
Quasi-Monte Carlo engine sampler. If None,
Sobol
is used.- rng
numpy.random.Generator
, optional Pseudorandom number generator state. When rng is None, a new
numpy.random.Generator
is created using entropy from the operating system. Types other thannumpy.random.Generator
are passed tonumpy.random.default_rng
to instantiate aGenerator
.Changed in version 1.15.0: As part of the SPEC-007 transition from use of
numpy.random.RandomState
tonumpy.random.Generator
, this keyword was changed from seed to rng. For an interim period, both keywords will continue to work, although only one may be specified at a time. After the interim period, function calls using the seed keyword will emit warnings. Following a deprecation period, the seed keyword will be removed.
Methods
random
([n])Draw n QMC samples from the multivariate Normal.
Examples
>>> import matplotlib.pyplot as plt >>> from scipy.stats import qmc >>> dist = qmc.MultivariateNormalQMC(mean=[0, 5], cov=[[1, 0], [0, 1]]) >>> sample = dist.random(512) >>> _ = plt.scatter(sample[:, 0], sample[:, 1]) >>> plt.show()