scipy.stats.binom#
- scipy.stats.binom = <scipy.stats._discrete_distns.binom_gen object>[source]#
A binomial discrete random variable.
As an instance of the
rv_discrete
class,binom
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Methods
rvs(n, p, loc=0, size=1, random_state=None)
Random variates.
pmf(k, n, p, loc=0)
Probability mass function.
logpmf(k, n, p, loc=0)
Log of the probability mass function.
cdf(k, n, p, loc=0)
Cumulative distribution function.
logcdf(k, n, p, loc=0)
Log of the cumulative distribution function.
sf(k, n, p, loc=0)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(k, n, p, loc=0)
Log of the survival function.
ppf(q, n, p, loc=0)
Percent point function (inverse of
cdf
— percentiles).isf(q, n, p, loc=0)
Inverse survival function (inverse of
sf
).stats(n, p, loc=0, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(n, p, loc=0)
(Differential) entropy of the RV.
expect(func, args=(n, p), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(n, p, loc=0)
Median of the distribution.
mean(n, p, loc=0)
Mean of the distribution.
var(n, p, loc=0)
Variance of the distribution.
std(n, p, loc=0)
Standard deviation of the distribution.
interval(confidence, n, p, loc=0)
Confidence interval with equal areas around the median.
See also
Notes
The probability mass function for
binom
is:\[f(k) = \binom{n}{k} p^k (1-p)^{n-k}\]for \(k \in \{0, 1, \dots, n\}\), \(0 \leq p \leq 1\)
binom
takes \(n\) and \(p\) as shape parameters, where \(p\) is the probability of a single success and \(1-p\) is the probability of a single failure.This distribution uses routines from the Boost Math C++ library for the computation of the
pmf
,cdf
,sf
,ppf
andisf
methods. [1]The probability mass function above is defined in the “standardized” form. To shift distribution use the
loc
parameter. Specifically,binom.pmf(k, n, p, loc)
is identically equivalent tobinom.pmf(k - loc, n, p)
.References
[1]The Boost Developers. “Boost C++ Libraries”. https://www.boost.org/.
Examples
>>> import numpy as np >>> from scipy.stats import binom >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate the first four moments:
>>> n, p = 5, 0.4 >>> mean, var, skew, kurt = binom.stats(n, p, moments='mvsk')
Display the probability mass function (
pmf
):>>> x = np.arange(binom.ppf(0.01, n, p), ... binom.ppf(0.99, n, p)) >>> ax.plot(x, binom.pmf(x, n, p), 'bo', ms=8, label='binom pmf') >>> ax.vlines(x, 0, binom.pmf(x, n, p), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pmf
:>>> rv = binom(n, p) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Check accuracy of
cdf
andppf
:>>> prob = binom.cdf(x, n, p) >>> np.allclose(x, binom.ppf(prob, n, p)) True
Generate random numbers:
>>> r = binom.rvs(n, p, size=1000)