roots_legendre#
- scipy.special.roots_legendre(n, mu=False)[source]#
Gauss-Legendre quadrature.
Compute the sample points and weights for Gauss-Legendre quadrature [GL]. The sample points are the roots of the nth degree Legendre polynomial \(P_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-1, 1]\) with weight function \(w(x) = 1\). See 2.2.10 in [AS] for more details.
- Parameters:
- nint
quadrature order
- mubool, optional
If True, return the sum of the weights, optional.
- Returns:
- xndarray
Sample points
- wndarray
Weights
- mufloat
Sum of the weights
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.
[GL] (1,2)Gauss-Legendre quadrature, Wikipedia, https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature
Examples
>>> import numpy as np >>> from scipy.special import roots_legendre, eval_legendre >>> roots, weights = roots_legendre(9)
roots
holds the roots, andweights
holds the weights for Gauss-Legendre quadrature.>>> roots array([-0.96816024, -0.83603111, -0.61337143, -0.32425342, 0. , 0.32425342, 0.61337143, 0.83603111, 0.96816024]) >>> weights array([0.08127439, 0.18064816, 0.2606107 , 0.31234708, 0.33023936, 0.31234708, 0.2606107 , 0.18064816, 0.08127439])
Verify that we have the roots by evaluating the degree 9 Legendre polynomial at
roots
. All the values are approximately zero:>>> eval_legendre(9, roots) array([-8.88178420e-16, -2.22044605e-16, 1.11022302e-16, 1.11022302e-16, 0.00000000e+00, -5.55111512e-17, -1.94289029e-16, 1.38777878e-16, -8.32667268e-17])
Here we’ll show how the above values can be used to estimate the integral from 1 to 2 of f(t) = t + 1/t with Gauss-Legendre quadrature [GL]. First define the function and the integration limits.
>>> def f(t): ... return t + 1/t ... >>> a = 1 >>> b = 2
We’ll use
integral(f(t), t=a, t=b)
to denote the definite integral of f from t=a to t=b. The sample points inroots
are from the interval [-1, 1], so we’ll rewrite the integral with the simple change of variable:x = 2/(b - a) * t - (a + b)/(b - a)
with inverse:
t = (b - a)/2 * x + (a + b)/2
Then:
integral(f(t), a, b) = (b - a)/2 * integral(f((b-a)/2*x + (a+b)/2), x=-1, x=1)
We can approximate the latter integral with the values returned by
roots_legendre
.Map the roots computed above from [-1, 1] to [a, b].
>>> t = (b - a)/2 * roots + (a + b)/2
Approximate the integral as the weighted sum of the function values.
>>> (b - a)/2 * f(t).dot(weights) 2.1931471805599276
Compare that to the exact result, which is 3/2 + log(2):
>>> 1.5 + np.log(2) 2.1931471805599454