scipy.special.

lambertw#

scipy.special.lambertw(z, k=0, tol=1e-8)[source]#

Lambert W function.

The Lambert W function W(z) is defined as the inverse function of w * exp(w). In other words, the value of W(z) is such that z = W(z) * exp(W(z)) for any complex number z.

The Lambert W function is a multivalued function with infinitely many branches. Each branch gives a separate solution of the equation z = w exp(w). Here, the branches are indexed by the integer k.

Parameters:
zarray_like

Input argument.

kint, optional

Branch index.

tolfloat, optional

Evaluation tolerance.

Returns:
warray

w will have the same shape as z.

See also

wrightomega

the Wright Omega function

Notes

All branches are supported by lambertw:

  • lambertw(z) gives the principal solution (branch 0)

  • lambertw(z, k) gives the solution on branch k

The Lambert W function has two partially real branches: the principal branch (k = 0) is real for real z > -1/e, and the k = -1 branch is real for -1/e < z < 0. All branches except k = 0 have a logarithmic singularity at z = 0.

Possible issues

The evaluation can become inaccurate very close to the branch point at -1/e. In some corner cases, lambertw might currently fail to converge, or can end up on the wrong branch.

Algorithm

Halley’s iteration is used to invert w * exp(w), using a first-order asymptotic approximation (O(log(w)) or O(w)) as the initial estimate.

The definition, implementation and choice of branches is based on [2].

References

[2]

Corless et al, “On the Lambert W function”, Adv. Comp. Math. 5 (1996) 329-359. https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf

Examples

The Lambert W function is the inverse of w exp(w):

>>> import numpy as np
>>> from scipy.special import lambertw
>>> w = lambertw(1)
>>> w
(0.56714329040978384+0j)
>>> w * np.exp(w)
(1.0+0j)

Any branch gives a valid inverse:

>>> w = lambertw(1, k=3)
>>> w
(-2.8535817554090377+17.113535539412148j)
>>> w*np.exp(w)
(1.0000000000000002+1.609823385706477e-15j)

Applications to equation-solving

The Lambert W function may be used to solve various kinds of equations. We give two examples here.

First, the function can be used to solve implicit equations of the form

for x. We assume c is not zero. After a little algebra, the equation may be written

z e^z = -b c e^{a c}

where z = c (a - x). z may then be expressed using the Lambert W function

z = W(-b c e^{a c})

giving

x = a - W(-b c e^{a c})/c

For example,

>>> a = 3
>>> b = 2
>>> c = -0.5

The solution to x = a + b e^{c x} is:

>>> x = a - lambertw(-b*c*np.exp(a*c))/c
>>> x
(3.3707498368978794+0j)

Verify that it solves the equation:

>>> a + b*np.exp(c*x)
(3.37074983689788+0j)

The Lambert W function may also be used find the value of the infinite power tower z^{z^{z^{\ldots}}}:

>>> def tower(z, n):
...     if n == 0:
...         return z
...     return z ** tower(z, n-1)
...
>>> tower(0.5, 100)
0.641185744504986
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
(0.64118574450498589+0j)