# scipy.special.i0e#

scipy.special.i0e(x, out=None) = <ufunc 'i0e'>#

Exponentially scaled modified Bessel function of order 0.

Defined as:

i0e(x) = exp(-abs(x)) * i0(x).
Parameters:
xarray_like

Argument (float)

outndarray, optional

Optional output array for the function values

Returns:
Iscalar or ndarray

Value of the exponentially scaled modified Bessel function of order 0 at x.

See also

iv

Modified Bessel function of the first kind

i0

Modified Bessel function of order 0

Notes

The range is partitioned into the two intervals [0, 8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. The polynomial expansions used are the same as those in i0, but they are not multiplied by the dominant exponential factor.

This function is a wrapper for the Cephes [1] routine i0e. i0e is useful for large arguments x: for these, i0 quickly overflows.

References

[1]

Cephes Mathematical Functions Library, http://www.netlib.org/cephes/

Examples

In the following example i0 returns infinity whereas i0e still returns a finite number.

>>> from scipy.special import i0, i0e
>>> i0(1000.), i0e(1000.)
(inf, 0.012617240455891257)

Calculate the function at several points by providing a NumPy array or list for x:

>>> import numpy as np
>>> i0e(np.array([-2., 0., 3.]))
array([0.30850832, 1.        , 0.24300035])

Plot the function from -10 to 10.

>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> x = np.linspace(-10., 10., 1000)
>>> y = i0e(x)
>>> ax.plot(x, y)
>>> plt.show()