scipy.special.airy#
- scipy.special.airy(z, out=None) = <ufunc 'airy'>#
Airy functions and their derivatives.
- Parameters:
- zarray_like
Real or complex argument.
- outtuple of ndarray, optional
Optional output arrays for the function values
- Returns:
- Ai, Aip, Bi, Bip4-tuple of scalar or ndarray
Airy functions Ai and Bi, and their derivatives Aip and Bip.
See also
airyeexponentially scaled Airy functions.
Notes
The Airy functions \(\operatorname{Ai}\) and \(\operatorname{Bi}\) are two independent solutions of
\[y''(z) = z y(z).\]For real \(z\) in \([-10, 10]\), the computation is carried out by calling the Cephes [1]
airyroutine, which uses power series summation for small \(z\) and rational minimax approximations for large \(z\).Outside this range, the AMOS [2] zairy and zbiry routines are employed. They are computed using power series for \(|z| < 1\) and the following relations to modified Bessel functions for larger \(z\) (where \(t \equiv 2 z^{3/2}/3\)):
\[ \begin{align}\begin{aligned}\operatorname{Ai}(z) = \frac{1}{\pi}\sqrt{\frac{z}{3}} \, K_{1/3}(t)\\\operatorname{Ai}'(z) = -\frac{z}{\pi \sqrt{3}} \, K_{2/3}(t)\\\operatorname{Bi}(z) = \sqrt{\frac{z}{3}} \left(I_{-1/3}(t) + I_{1/3}(t)\right)\\\operatorname{Bi}'(z) = \frac{z}{\sqrt{3}} \left(I_{-2/3}(t) + I_{2/3}(t)\right)\end{aligned}\end{align} \]References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
[2]Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”, http://netlib.org/amos/
Examples
Compute the Airy functions on the interval \([-15, 5]\).
>>> import numpy as np >>> from scipy import special >>> x = np.linspace(-15, 5, 201) >>> ai, aip, bi, bip = special.airy(x)
Plot \(\operatorname{Ai}(x)\) and \(\operatorname{Bi}(x)\).
>>> import matplotlib.pyplot as plt >>> plt.plot(x, ai, 'r', label='Ai(x)') >>> plt.plot(x, bi, 'b--', label='Bi(x)') >>> plt.ylim(-0.5, 1.0) >>> plt.grid() >>> plt.legend(loc='upper left') >>> plt.show()