cgs#
- scipy.sparse.linalg.cgs(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)[source]#
Solve
Ax = b
with the Conjugate Gradient Squared method.- Parameters:
- A{sparse array, ndarray, LinearOperator}
The real-valued N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce
Ax
using, e.g.,scipy.sparse.linalg.LinearOperator
.- bndarray
Right hand side of the linear system. Has shape (N,) or (N,1).
- x0ndarray
Starting guess for the solution.
- rtol, atolfloat, optional
Parameters for the convergence test. For convergence,
norm(b - A @ x) <= max(rtol*norm(b), atol)
should be satisfied. The default isatol=0.
andrtol=1e-5
.- maxiterinteger
Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M{sparse array, ndarray, LinearOperator}
Preconditioner for
A
. It should approximate the inverse of A (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.- callbackfunction
User-supplied function to call after each iteration. It is called as
callback(xk)
, wherexk
is the current solution vector.
- Returns:
- xndarray
The converged solution.
- infointeger
- Provides convergence information:
0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown
Notes
The preconditioner M should be a matrix such that
M @ A
has a smaller condition number than A, see [1].References
[1]“Preconditioner”, Wikipedia, https://en.wikipedia.org/wiki/Preconditioner
[2]“Conjugate gradient squared”, Wikipedia, https://en.wikipedia.org/wiki/Conjugate_gradient_squared_method
Examples
>>> import numpy as np >>> from scipy.sparse import csc_array >>> from scipy.sparse.linalg import cgs >>> R = np.array([[4, 2, 0, 1], ... [3, 0, 0, 2], ... [0, 1, 1, 1], ... [0, 2, 1, 0]]) >>> A = csc_array(R) >>> b = np.array([-1, -0.5, -1, 2]) >>> x, exit_code = cgs(A, b) >>> print(exit_code) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True