scipy.sparse.linalg.

bicgstab#

scipy.sparse.linalg.bicgstab(A, b, x0=None, *, rtol=1e-05, atol=0.0, maxiter=None, M=None, callback=None)[source]#

Solve Ax = b with the BIConjugate Gradient STABilized method.

Parameters:
A{sparse array, ndarray, LinearOperator}

The real or complex N-by-N matrix of the linear system. Alternatively, A can be a linear operator which can produce Ax and A^T x using, e.g., scipy.sparse.linalg.LinearOperator.

bndarray

Right hand side of the linear system. Has shape (N,) or (N,1).

x0ndarray

Starting guess for the solution.

rtol, atolfloat, optional

Parameters for the convergence test. For convergence, norm(b - A @ x) <= max(rtol*norm(b), atol) should be satisfied. The default is atol=0. and rtol=1e-5.

maxiterinteger

Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

M{sparse array, ndarray, LinearOperator}

Preconditioner for A. It should approximate the inverse of A (see Notes). Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.

callbackfunction

User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.

Returns:
xndarray

The converged solution.

infointeger
Provides convergence information:

0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : parameter breakdown

Notes

The preconditioner M should be a matrix such that M @ A has a smaller condition number than A, see [1] .

References

[1]

“Preconditioner”, Wikipedia, https://en.wikipedia.org/wiki/Preconditioner

[2]

“Biconjugate gradient stabilized method”, Wikipedia, https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method

Examples

>>> import numpy as np
>>> from scipy.sparse import csc_array
>>> from scipy.sparse.linalg import bicgstab
>>> R = np.array([[4, 2, 0, 1],
...               [3, 0, 0, 2],
...               [0, 1, 1, 1],
...               [0, 2, 1, 0]])
>>> A = csc_array(R)
>>> b = np.array([-1, -0.5, -1, 2])
>>> x, exit_code = bicgstab(A, b, atol=1e-5)
>>> print(exit_code)  # 0 indicates successful convergence
0
>>> np.allclose(A.dot(x), b)
True