class scipy.interpolate.NearestNDInterpolator(x, y, rescale=False, tree_options=None)[source]

NearestNDInterpolator(x, y).

Nearest-neighbor interpolation in N > 1 dimensions.

New in version 0.9.

x(Npoints, Ndims) ndarray of floats

Data point coordinates.

y(Npoints,) ndarray of float or complex

Data values.

rescaleboolean, optional

Rescale points to unit cube before performing interpolation. This is useful if some of the input dimensions have incommensurable units and differ by many orders of magnitude.

New in version 0.14.0.

tree_optionsdict, optional

Options passed to the underlying cKDTree.

New in version 0.17.0.

See also


Interpolate unstructured D-D data.


Piecewise linear interpolant in N dimensions.


Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.


Uses scipy.spatial.cKDTree


We can interpolate values on a 2D plane:

>>> from scipy.interpolate import NearestNDInterpolator
>>> import matplotlib.pyplot as plt
>>> rng = np.random.default_rng()
>>> x = rng.random(10) - 0.5
>>> y = rng.random(10) - 0.5
>>> z = np.hypot(x, y)
>>> X = np.linspace(min(x), max(x))
>>> Y = np.linspace(min(y), max(y))
>>> X, Y = np.meshgrid(X, Y)  # 2D grid for interpolation
>>> interp = NearestNDInterpolator(list(zip(x, y)), z)
>>> Z = interp(X, Y)
>>> plt.pcolormesh(X, Y, Z, shading='auto')
>>> plt.plot(x, y, "ok", label="input point")
>>> plt.legend()
>>> plt.colorbar()
>>> plt.axis("equal")



Evaluate interpolator at given points.