scipy.integrate.

cumulative_trapezoid#

scipy.integrate.cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None)[source]#

Cumulatively integrate y(x) using the composite trapezoidal rule.

Parameters:
yarray_like

Values to integrate.

xarray_like, optional

The coordinate to integrate along. If None (default), use spacing dx between consecutive elements in y.

dxfloat, optional

Spacing between elements of y. Only used if x is None.

axisint, optional

Specifies the axis to cumulate. Default is -1 (last axis).

initialscalar, optional

If given, insert this value at the beginning of the returned result. 0 or None are the only values accepted. Default is None, which means res has one element less than y along the axis of integration.

Returns:
resndarray

The result of cumulative integration of y along axis. If initial is None, the shape is such that the axis of integration has one less value than y. If initial is given, the shape is equal to that of y.

See also

numpy.cumsum, numpy.cumprod
cumulative_simpson

cumulative integration using Simpson’s 1/3 rule

quad

adaptive quadrature using QUADPACK

fixed_quad

fixed-order Gaussian quadrature

dblquad

double integrals

tplquad

triple integrals

romb

integrators for sampled data

Notes

Array API Standard Support

cumulative_trapezoid has experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variable SCIPY_ARRAY_API=1 and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.

Library

CPU

GPU

NumPy

n/a

CuPy

n/a

PyTorch

JAX

Dask

n/a

See Support for the array API standard for more information.

Examples

>>> from scipy import integrate
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-2, 2, num=20)
>>> y = x
>>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
>>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
>>> plt.show()
../../_images/scipy-integrate-cumulative_trapezoid-1.png