1
2
3
4 """
5 http://www.scipy.org/Cookbook/Least_Squares_Circle
6 """
7
8 from numpy import *
9
10
11 x = r_[ 9, 35, -13, 10, 23, 0]
12 y = r_[ 34, 10, 6, -14, 27, -10]
13
14
15 method_1 = 'algebraic'
16
17
18 x_m = mean(x)
19 y_m = mean(y)
20
21
22 u = x - x_m
23 v = y - y_m
24
25
26
27
28
29 Suv = sum(u*v)
30 Suu = sum(u**2)
31 Svv = sum(v**2)
32 Suuv = sum(u**2 * v)
33 Suvv = sum(u * v**2)
34 Suuu = sum(u**3)
35 Svvv = sum(v**3)
36
37
38 A = array([ [ Suu, Suv ], [Suv, Svv]])
39 B = array([ Suuu + Suvv, Svvv + Suuv ])/2.0
40 uc, vc = linalg.solve(A, B)
41
42 xc_1 = x_m + uc
43 yc_1 = y_m + vc
44
45
46 Ri_1 = sqrt((x-xc_1)**2 + (y-yc_1)**2)
47 R_1 = mean(Ri_1)
48 residu_1 = sum((Ri_1-R_1)**2)
49
50
51 from scipy import optimize
52
53 method_2 = "leastsq"
54
55 def calc_R(c):
56 """ calculate the distance of each 2D points from the center c=(xc, yc) """
57 return sqrt((x-c[0])**2 + (y-c[1])**2)
58
59 def calc_ecart(c):
60 """ calculate the algebraic distance between the 2D points and the mean circle centered at c=(xc, yc) """
61 Ri = calc_R(c)
62 return Ri - Ri.mean()
63
64 center_estimate = x_m, y_m
65 center_2, ier = optimize.leastsq(calc_ecart, center_estimate)
66
67 xc_2, yc_2 = center_2
68 Ri_2 = calc_R(center_2)
69 R_2 = Ri_2.mean()
70 residu_2 = sum((Ri_2 - R_2)**2)
71
72
73 from scipy import odr
74
75 method_3 = "odr"
76
77 def calc_f(beta, x):
78 """ implicit function of the circle """
79 xc, yc, r = beta
80 return (x[0]-xc)**2 + (x[1]-yc)**2 -r**2
81
82 def calc_estimate(data):
83 """ Return a first estimation on the parameter from the data """
84 xc0, yc0 = data.x.mean(axis=1)
85 r0 = sqrt((data.x[0]-xc0)**2 +(data.x[1] -yc0)**2).mean()
86 return xc0, yc0, r0
87
88
89
90
91 lsc_data = odr.Data(row_stack([x, y]), y=1)
92 lsc_model = odr.Model(calc_f, implicit=True, estimate=calc_estimate)
93 lsc_odr = odr.ODR(lsc_data, lsc_model)
94 lsc_out = lsc_odr.run()
95
96 xc_3, yc_3, R_3 = lsc_out.beta
97 Ri_3 = calc_R([xc_3, yc_3])
98 residu_3 = sum((Ri_3 - R_3)**2)
99
100
101 fmt = '%-15s %10.5f %10.5f %10.5f %10.6f %10.6f'
102 print '\n%-15s %10s %10s %10s %10s %10s' % tuple('METHOD Xc Yc Rc std(Ri) residu'.split())
103 print '-'*(15 +5*(10+1))
104 print fmt % (method_1, xc_1, yc_1, R_1, Ri_1.std(), residu_1)
105 print fmt % (method_2, xc_2, yc_2, R_2, Ri_2.std(), residu_2)
106 print fmt % (method_3, xc_3, yc_3, R_3, Ri_3.std(), residu_3)
107
108
109
110 from matplotlib import pyplot as p, cm
111
112 f = p.figure()
113 p.plot(x, y, 'ro', label='data', ms=9, mec='b', mew=1)
114
115 theta_fit = linspace(-pi, pi, 180)
116
117 x_fit1 = xc_1 + R_1*cos(theta_fit)
118 y_fit1 = yc_1 + R_1*sin(theta_fit)
119 p.plot(x_fit1, y_fit1, 'b-' , label=method_1, lw=2)
120
121 x_fit2 = xc_2 + R_2*cos(theta_fit)
122 y_fit2 = yc_2 + R_2*sin(theta_fit)
123 p.plot(x_fit2, y_fit2, 'k--', label=method_2, lw=2)
124
125 x_fit3 = xc_3 + R_3*cos(theta_fit)
126 y_fit3 = yc_3 + R_3*sin(theta_fit)
127 p.plot(x_fit3, y_fit3, 'r-.', label=method_3, lw=2)
128
129 p.plot([xc_1], [yc_1], 'bD', mec='y', mew=1)
130 p.plot([xc_2], [yc_2], 'gD', mec='r', mew=1)
131 p.plot([xc_3], [yc_3], 'kD', mec='w', mew=1)
132
133
134 p.axis('equal')
135 p.xlabel('x')
136 p.ylabel('y')
137 p.legend(loc='best',labelspacing=0.1)
138
139
140 nb_pts = 100
141
142 p.draw()
143 xmin, xmax = p.xlim()
144 ymin, ymax = p.ylim()
145
146 vmin = min(xmin, ymin)
147 vmax = max(xmax, ymax)
148
149 xg, yg = ogrid[vmin:vmax:nb_pts*1j, vmin:vmax:nb_pts*1j]
150 xg = xg[..., newaxis]
151 yg = yg[..., newaxis]
152
153 Rig = sqrt( (xg - x)**2 + (yg - y)**2 )
154 Rig_m = Rig.mean(axis=2)[..., newaxis]
155 residu = sum( (Rig-Rig_m)**2 ,axis=2)
156
157 lvl = exp(linspace(log(residu.min()), log(residu.max()), 15))
158
159 p.contourf(xg.flat, yg.flat, residu.T, lvl, alpha=0.75, cmap=cm.YlGnBu_r)
160 cbar = p.colorbar(format='%.1f')
161 cbar.set_label('Residu')
162 p.xlim(xmin=vmin, xmax=vmax)
163 p.ylim(ymin=vmin, ymax=vmax)
164
165 p.grid()
166 p.title('Leasts Squares Circle')
167 p.show()
168