tf2ss#
- scipy.signal.tf2ss(num, den)[source]#
Transfer function to state-space representation.
- Parameters:
- num, denarray_like
Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree. The denominator needs to be at least as long as the numerator.
- Returns:
- A, B, C, Dndarray
State space representation of the system, in controller canonical form.
Notes
Array API Standard Support
tf2sshas experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
⛔
PyTorch
⛔
⛔
JAX
⛔
⛔
Dask
⛔
n/a
See Support for the array API standard for more information.
Examples
Convert the transfer function:
\[H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\]>>> num = [1, 3, 3] >>> den = [1, 2, 1]
to the state-space representation:
\[ \begin{align}\begin{aligned}\begin{split}\dot{\textbf{x}}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\\end{split}\\\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)\end{aligned}\end{align} \]>>> from scipy.signal import tf2ss >>> A, B, C, D = tf2ss(num, den) >>> A array([[-2., -1.], [ 1., 0.]]) >>> B array([[ 1.], [ 0.]]) >>> C array([[ 1., 2.]]) >>> D array([[ 1.]])