solve_triangular#
- scipy.linalg.solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False, overwrite_b=False, check_finite=True)[source]#
Solve the equation
a x = b
for x, assuming a is a triangular matrix.The documentation is written assuming array arguments are of specified “core” shapes. However, array argument(s) of this function may have additional “batch” dimensions prepended to the core shape. In this case, the array is treated as a batch of lower-dimensional slices; see Batched Linear Operations for details.
- Parameters:
- a(M, M) array_like
A triangular matrix
- b(M,) or (M, N) array_like
Right-hand side matrix in
a x = b
- lowerbool, optional
Use only data contained in the lower triangle of a. Default is to use upper triangle.
- trans{0, 1, 2, ‘N’, ‘T’, ‘C’}, optional
Type of system to solve:
trans
system
0 or ‘N’
a x = b
1 or ‘T’
a^T x = b
2 or ‘C’
a^H x = b
- unit_diagonalbool, optional
If True, diagonal elements of a are assumed to be 1 and will not be referenced.
- overwrite_bbool, optional
Allow overwriting data in b (may enhance performance)
- check_finitebool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- x(M,) or (M, N) ndarray
Solution to the system
a x = b
. Shape of return matches b.
- Raises:
- LinAlgError
If a is singular
Notes
Added in version 0.9.0.
Examples
Solve the lower triangular system a x = b, where:
[3 0 0 0] [4] a = [2 1 0 0] b = [2] [1 0 1 0] [4] [1 1 1 1] [2]
>>> import numpy as np >>> from scipy.linalg import solve_triangular >>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) >>> b = np.array([4, 2, 4, 2]) >>> x = solve_triangular(a, b, lower=True) >>> x array([ 1.33333333, -0.66666667, 2.66666667, -1.33333333]) >>> a.dot(x) # Check the result array([ 4., 2., 4., 2.])