qr_update#
- scipy.linalg.qr_update(Q, R, u, v, overwrite_qruv=False, check_finite=True)#
Rank-k QR update
If
A = Q R
is the QR factorization ofA
, return the QR factorization ofA + u v**T
for realA
orA + u v**H
for complexA
.The documentation is written assuming array arguments are of specified “core” shapes. However, array argument(s) of this function may have additional “batch” dimensions prepended to the core shape. In this case, the array is treated as a batch of lower-dimensional slices; see Batched Linear Operations for details.
- Parameters:
- Q(M, M) or (M, N) array_like
Unitary/orthogonal matrix from the qr decomposition of A.
- R(M, N) or (N, N) array_like
Upper triangular matrix from the qr decomposition of A.
- u(M,) or (M, k) array_like
Left update vector
- v(N,) or (N, k) array_like
Right update vector
- overwrite_qruvbool, optional
If True, consume Q, R, u, and v, if possible, while performing the update, otherwise make copies as necessary. Defaults to False.
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.
- Returns:
- Q1ndarray
Updated unitary/orthogonal factor
- R1ndarray
Updated upper triangular factor
See also
Notes
This routine does not guarantee that the diagonal entries of R1 are real or positive.
Added in version 0.16.0.
References
[1]Golub, G. H. & Van Loan, C. F. Matrix Computations, 3rd Ed. (Johns Hopkins University Press, 1996).
[2]Daniel, J. W., Gragg, W. B., Kaufman, L. & Stewart, G. W. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput. 30, 772-795 (1976).
[3]Reichel, L. & Gragg, W. B. Algorithm 686: FORTRAN Subroutines for Updating the QR Decomposition. ACM Trans. Math. Softw. 16, 369-377 (1990).
Examples
>>> import numpy as np >>> from scipy import linalg >>> a = np.array([[ 3., -2., -2.], ... [ 6., -9., -3.], ... [ -3., 10., 1.], ... [ 6., -7., 4.], ... [ 7., 8., -6.]]) >>> q, r = linalg.qr(a)
Given this q, r decomposition, perform a rank 1 update.
>>> u = np.array([7., -2., 4., 3., 5.]) >>> v = np.array([1., 3., -5.]) >>> q_up, r_up = linalg.qr_update(q, r, u, v, False) >>> q_up array([[ 0.54073807, 0.18645997, 0.81707661, -0.02136616, 0.06902409], # may vary (signs) [ 0.21629523, -0.63257324, 0.06567893, 0.34125904, -0.65749222], [ 0.05407381, 0.64757787, -0.12781284, -0.20031219, -0.72198188], [ 0.48666426, -0.30466718, -0.27487277, -0.77079214, 0.0256951 ], [ 0.64888568, 0.23001 , -0.4859845 , 0.49883891, 0.20253783]]) >>> r_up array([[ 18.49324201, 24.11691794, -44.98940746], # may vary (signs) [ 0. , 31.95894662, -27.40998201], [ 0. , 0. , -9.25451794], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]])
The update is equivalent, but faster than the following.
>>> a_up = a + np.outer(u, v) >>> q_direct, r_direct = linalg.qr(a_up)
Check that we have equivalent results:
>>> np.allclose(np.dot(q_up, r_up), a_up) True
And the updated Q is still unitary:
>>> np.allclose(np.dot(q_up.T, q_up), np.eye(5)) True
Updating economic (reduced, thin) decompositions is also possible:
>>> qe, re = linalg.qr(a, mode='economic') >>> qe_up, re_up = linalg.qr_update(qe, re, u, v, False) >>> qe_up array([[ 0.54073807, 0.18645997, 0.81707661], # may vary (signs) [ 0.21629523, -0.63257324, 0.06567893], [ 0.05407381, 0.64757787, -0.12781284], [ 0.48666426, -0.30466718, -0.27487277], [ 0.64888568, 0.23001 , -0.4859845 ]]) >>> re_up array([[ 18.49324201, 24.11691794, -44.98940746], # may vary (signs) [ 0. , 31.95894662, -27.40998201], [ 0. , 0. , -9.25451794]]) >>> np.allclose(np.dot(qe_up, re_up), a_up) True >>> np.allclose(np.dot(qe_up.T, qe_up), np.eye(3)) True
Similarly to the above, perform a rank 2 update.
>>> u2 = np.array([[ 7., -1,], ... [-2., 4.], ... [ 4., 2.], ... [ 3., -6.], ... [ 5., 3.]]) >>> v2 = np.array([[ 1., 2.], ... [ 3., 4.], ... [-5., 2]]) >>> q_up2, r_up2 = linalg.qr_update(q, r, u2, v2, False) >>> q_up2 array([[-0.33626508, -0.03477253, 0.61956287, -0.64352987, -0.29618884], # may vary (signs) [-0.50439762, 0.58319694, -0.43010077, -0.33395279, 0.33008064], [-0.21016568, -0.63123106, 0.0582249 , -0.13675572, 0.73163206], [ 0.12609941, 0.49694436, 0.64590024, 0.31191919, 0.47187344], [-0.75659643, -0.11517748, 0.10284903, 0.5986227 , -0.21299983]]) >>> r_up2 array([[-23.79075451, -41.1084062 , 24.71548348], # may vary (signs) [ 0. , -33.83931057, 11.02226551], [ 0. , 0. , 48.91476811], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]])
This update is also a valid qr decomposition of
A + U V**T
.>>> a_up2 = a + np.dot(u2, v2.T) >>> np.allclose(a_up2, np.dot(q_up2, r_up2)) True >>> np.allclose(np.dot(q_up2.T, q_up2), np.eye(5)) True