eigvals#
- scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)[source]#
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues,
w, of a general matrix:a @ vr[:, i] = w[i] * b @ vr[:, i]
- Parameters:
- a(…, M, M) array_like
A complex or real matrix (or a stack of matrices), whose eigenvalues will be computed.
- b(…, M, M) array_like, optional
Right-hand side matrix (or a stack of matrices) in a generalized eigenvalue problem. If omitted (default), identity matrix is assumed.
- overwrite_abool, optional
Whether to overwrite data in a (may improve performance)
- check_finitebool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- homogeneous_eigvalsbool, optional
If True, return the eigenvalues in homogeneous coordinates. In this case
wis a(2, M)array so that:w[1, i] * a @ vr[:, i] = w[0, i] * b @ vr[:, i]
This option is sometimes useful for generalized eigenvalue problems,
b is not None, where an eigenvalue, \(\lambda = \alpha / \beta\), can over- or underflow; typically, :math:alpha and \(\beta\) are of the order ofnorm(a)andnorm(b), respectively.Default is False.
- Returns:
- w(…, M,) or (…, 2, M) complex ndarray
The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is
(..., M)unlesshomogeneous_eigvals=True.
- Raises:
- LinAlgError
If eigenvalue computation does not converge
See also
eigeigenvalues and right eigenvectors of general arrays.
eigvalsheigenvalues of symmetric or Hermitian arrays
eigvals_bandedeigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonaleigenvalues of symmetric/Hermitian tridiagonal matrices
Examples
>>> import numpy as np >>> from scipy import linalg >>> a = np.array([[0., -1.], ... [1., 0.]])
Compute the eigenvalues (
eigvalsis the same aseig(a, right=False))>>> linalg.eigvals(a) array([0.+1.j, 0.-1.j])
Solve a generalized eigenvalue problem:
>>> b = np.array([[0., 1.], [1., 1.]]) >>> linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j])
Inputs with
ndim > 2are interpreted as a batch of matrices>>> a2 = np.stack((a, 2*a)) >>> linalg.eigvals(a2) array([[0.+1.j, 0.-1.j], [0.+2.j, 0.-2.j]])
homogeneous_eigvals=Trueargument effectively separates each eigenvalue into a numerator-denominator pair:>>> a = np.array([[3., 0., 0.], ... [0., 8., 0.], ... [0., 0., 7.]]) >>> b = 2*np.eye(3) >>> linalg.eigvals(a, b, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [2.+0.j, 2.+0.j, 2.+0.j]])