eigvals#
- scipy.linalg.eigvals(a, b=None, overwrite_a=False, check_finite=True, homogeneous_eigvals=False)[source]#
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues of a general matrix:
a vr[:,i] = w[i] b vr[:,i]
The documentation is written assuming array arguments are of specified “core” shapes. However, array argument(s) of this function may have additional “batch” dimensions prepended to the core shape. In this case, the array is treated as a batch of lower-dimensional slices; see Batched Linear Operations for details.
- Parameters:
- a(M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors will be computed.
- b(M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed.
- overwrite_abool, optional
Whether to overwrite data in a (may improve performance)
- check_finitebool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- homogeneous_eigvalsbool, optional
If True, return the eigenvalues in homogeneous coordinates. In this case
w
is a (2, M) array so that:w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
- Returns:
- w(M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity but not in any specific order. The shape is (M,) unless
homogeneous_eigvals=True
.
- Raises:
- LinAlgError
If eigenvalue computation does not converge
See also
eig
eigenvalues and right eigenvectors of general arrays.
eigvalsh
eigenvalues of symmetric or Hermitian arrays
eigvals_banded
eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal
eigenvalues of symmetric/Hermitian tridiagonal matrices
Examples
>>> import numpy as np >>> from scipy import linalg >>> a = np.array([[0., -1.], [1., 0.]]) >>> linalg.eigvals(a) array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]]) >>> linalg.eigvals(a, b) array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]]) >>> linalg.eigvals(a, homogeneous_eigvals=True) array([[3.+0.j, 8.+0.j, 7.+0.j], [1.+0.j, 1.+0.j, 1.+0.j]])