

Python Buffer Interface

Travis E. Oliphant

Getting NumPy into Python has been a
long-term goal

We have not wanted to commit to the
release schedule

Nobody has stepped up to argue our case
with other Python developers.

Now NumPy is even “bigger” than it was in
the past

NumPy in Python

® Tactical change

® Get the “structure” of NumPy into
Python 3.0 via the buffer interface

® Start with changes to Python 3.0 and
then backport additions to Python 2.6

® Eventually, the demand for some of the
rest of NumPy will probably increase

Array Interface

® Numeric, Numarray, NumPy all use the
array interface to share data

® An attribute-based interface without any
direct support in the language

® We realized it could act as a replacement
of the buffer protocol (interface)

PEP 3118

® After SciPy 2006, the idea of the buffer
protocol was hatched.

® | was side tracked for much of 2006-2007
academic year on other issues

® With the help of Carl Banks and Greg
Ewing and others on py3k-dev, PEP 3118
grew out of my early efforts.

® Re-defines the tp_as_buffer function

pointer table for every Py TypeObiject

® Adds PyMemoryViewObject (memoryview

in Python) --- will be the first object in Python
to support multi-dimensional slicing.

® Expands the struct module with new
character-based syntax.

® Creates new C-API functions to make
common things simple.

Timeline

® Happening now. If you'd like to help the
Google Sprint is next week (but I'm moving
next week).

® MemoryViewObject needs work
® Struct module needs work
® Bug-fixes on what’s already implemented

® Python 3.0 is due for alpha release at the
end of August.

tp_as_buffer

typedef struct {
readbufferproc bf getbuffer;
writebufferproc bf writebuffer;
segcountproc bf getsegcount;
charbufferproc bf getcharbuf;

} PyBufferProcs

typedef struct {
getbufferproc bf getbuffer;
releasebufferproc bf releasebuffer;
} PyBufferProcs

E) GetBuffer

typedef int (*getbufferproc)
(PyObject *obj, PyBuffer *view, 1int flags)

Argument Explanation
obj Object being queried
view View structure to fill
flags What kind of buffer is requested
return -1 if error; O if success

typedef void (*releasebufferproc)
(PyObject *obj, PyBuffer *view)

[PyBuffer structure

struct bufferinfo {
volid *buf;
Py ssize t len;
Py ssize t 1temsize;
int readonly;
int ndim;
char *format;
Py ssize t *shape;
Py ssize t *strides;
Py ssize t *suboffsets;
vold *internal;

} PyBuffer;

PyBuffer Explanation

Member Description

buf Pointer to start of memory

len Total number of bytes

itemsize Number of bytes per element

readon |y Is memory read-only?

ndim Number of dimensions (>=0)
format Struct-style syntax describing memory
Shape Size in each dimension
Stl"'des Number of bytes to skip to get to the next element in each dimension
If >=0, then value is a pointer in this dimension. This tells how many bytes to skip after
SU bOffS et de-referencing. to get to the start of the next dimension.

internal For use by obiject.

Flag Description

PyBUF SIMPLE

Only simple (ptr, len) interface is requested

PyBUF_CHARACTER

Character buffer requested

PyBUF WRITEABLE

A writeable buffer is needed

PyBUF LOCKDATA

A locked, read-only buffer is needed

PyBUF _FORMAT

Make sure format is provided

PyBUF_ND

Make sure shape information is provided

PyBUF _STRIDES

Make sure stride information is provided

PyBUF INDIRECT

Provide sub-offsets if available

PyBUF_{C,FANY}
_CONTIGUOUS

Make sure buffer is C, Fortran, or either-one
contiguous

Pointer in-direction ke

Computer Engineering

void *get item pointer(int ndim, void *buf, Py ssize t *strides,
Py ssize t *suboffsets, Py ssize t *indices) {
char *pointer = (char*)buf;
int i;
for (1 = 0; 1 < ndim; i++) {

pointer += strides[i1i] * indices[1];
1f (suboffsets[i] >=0) {
pointer = *((char**)pointer) + suboffsets[i];

}
}

return (void*)pointer;

(void *) PyBuffer GetPointer
(PyBuffer *view, Py ssize t *indices);

Suboffsets

buf suboffsets = {0,-1}

New C-API BYU

Computer Engineering

PyObject_CheckBuffer Make sure getbuffer is present
PyObject GetBuffer Call getbuffer if available
PyObject ReleaseBuffer Call releasebuffer if available
PyBuffer_FromContiguous Copy to a buffered memory from contiguous memory
PyBuffer ToContiguous Copy from a buffered memory to contiguous memory
PyObject CopyData Copy data between two objects with the buffer interface
PyBuffer_IsContiguous True if buffer is contiguous (either C or Fortran depending on argument)

PyBuffer_FillContiguousStrides |[Fill a strides array belonging to a contiguous N-d array.

PyBuffer_Filllnfo Fill the PyBuffer structure for simple |-d buffer

PyMemoryView_Check Make sure the object is a MemoryView object

PyMemoryView_GetContiguous |Get a contiguous MemoryView object from another object

PyMemoryView_ FromObject |[Get a MemoryView object from an object using the buffer interface

PyMemoryView_FromMemory |[Get a MemoryView object from a PyBuffer struct.

MemoryView Object

typedef struct {
PyObject HEAD
PyObject *base;
PyBuffer view;

} PyMemoryViewObject;

Methods Purpose

___getitem___ Multi-dimensional slicing
___setitem | Multi-dimensional sliced setting
tobytes Create contiguous bytes
tolist Create a (nested) list

Attributes

format

itemsize

shape

strides

suboffsets

size

readonly

ndim

Struct-string syntax

Char. Description

t bit (number before states how many bits)

4 platform _Bool

g long double (unpacks to ctypes object)

C ucs-1 (latin-1) (unpacks to unicode)

u ucs-2 (unpacks to unicode)

w ucs-4 (unpacks to unicode)

O Python Object pointer

Z Complex of whatever the next specifier is (unpacks to complex)

& Pointer to whatever the next specifier is (unpacks to ctypes void_p)
T{} Structure (detailed layout should be inside {}) (unpacks to ctypes)

(kl,k2,...,.kn) [Multi-dimensional array of whatever comes next (unpacks to nested list)
:name: Optional name of the preceeding element
X{) Pointer to a function (optional signature inside of {} with any return
value preeceeded by -> and placed at the end)

L]

struct {
int ival;
struct {
unsigned short sval;
unsigned char bval;
unsigned char cval;
} sub;

N\

isival:

H:sval:
B:bval:
B:cval:
}:sub:

il Struct examples

struct {
int ival;
double data[l6*4];

}

l1:1ival:
(16,4)d:data:

Implications

® Should have standard way to share data
among media libraries

® Should have standard way to share arrays
among GUIs

® Should increase adoption of NumPy-like
features by wider Python community

® Powerful struct/ctypes connection

® Maybe automatic compiled function call-
backs using function-pointer data

E] Interested?

® Google code Sprints (Aug. 22-25)

® Contact me for some Guidance before
Tuesday morning (Aug. 21)

