
Average Attendee
First Second

Third



Python Buffer Interface 
Travis E. Oliphant



NumPy in Python

• Getting NumPy into Python has been a 
long-term goal

• We have not wanted to commit to the 
release schedule

• Nobody has stepped up to argue our case 
with other Python developers. 

• Now NumPy is even “bigger” than it was in 
the past



NumPy in Python

• Tactical change

• Get the “structure” of NumPy into 
Python 3.0 via the buffer interface

• Start with changes to Python 3.0 and 
then backport additions to Python 2.6

• Eventually, the demand for some of the 
rest of NumPy will probably increase



Array Interface

• Numeric, Numarray, NumPy all use the 
array interface to share data

• An attribute-based interface without any 
direct support in the language

• We realized it could act as a replacement 
of the buffer protocol (interface) 



PEP 3118

• After SciPy 2006, the idea of the buffer 
protocol was hatched. 

• I was side tracked for much of 2006-2007 
academic year on other issues

• With the help of Carl Banks and Greg 
Ewing and others on py3k-dev, PEP 3118 
grew out of my early efforts. 



PEP 3118 Overview

• Re-defines the tp_as_buffer function 
pointer table for every PyTypeObject

• Adds PyMemoryViewObject (memoryview 
in Python) --- will be the first object in Python 
to support multi-dimensional slicing. 

• Expands the struct module with new 
character-based syntax.

• Creates new C-API functions to make 
common things simple. 



Timeline

• Happening now.  If you’d like to help the 
Google Sprint is next week (but I’m moving 
next week). 

• MemoryViewObject needs work

• Struct module needs work

• Bug-fixes on what’s already implemented

• Python 3.0 is due for alpha release at the 
end of August.



tp_as_buffer

typedef struct {
    getbufferproc bf_getbuffer;
    releasebufferproc bf_releasebuffer;
} PyBufferProcs

typedef struct {
    readbufferproc bf_getbuffer;
    writebufferproc bf_writebuffer;
    segcountproc bf_getsegcount;
    charbufferproc bf_getcharbuf;
} PyBufferProcs



GetBuffer
 typedef int (*getbufferproc)
     (PyObject *obj, PyBuffer *view, int flags)

Argument Explanation

obj Object being queried

view View structure to fill

flags What kind of buffer is requested

return -1 if error;  0 if success

 typedef void (*releasebufferproc)
     (PyObject *obj, PyBuffer *view)



PyBuffer structure

  struct bufferinfo {
       void *buf;
       Py_ssize_t len;
       Py_ssize_t itemsize;
       int readonly;
       int ndim;
       char *format;
       Py_ssize_t *shape;
       Py_ssize_t *strides;
       Py_ssize_t *suboffsets;
       void *internal;
  } PyBuffer;



PyBuffer Explanation
Member Description

buf Pointer to start of memory

len Total number of bytes

itemsize Number of bytes per element

readonly Is memory read-only?

ndim Number of dimensions (>=0)

format Struct-style syntax describing memory

shape Size in each dimension

strides Number of bytes to skip to get to the next element in each dimension

suboffset If >=0, then value is a pointer in this dimension.  This tells how many bytes to skip after 
de-referencing. to get to the start of the next dimension.

internal For use by object.   



Flags 
Flag Description

PyBUF_SIMPLE Only simple (ptr, len) interface is requested

PyBUF_CHARACTER Character buffer requested

PyBUF_WRITEABLE A writeable buffer is needed

PyBUF_LOCKDATA A locked, read-only buffer is needed 

PyBUF_FORMAT Make sure format is provided

PyBUF_ND Make sure shape information is provided

PyBUF_STRIDES Make sure stride information is provided

PyBUF_INDIRECT Provide sub-offsets if available

PyBUF_{C,F,ANY}
_CONTIGUOUS

Make sure buffer is C, Fortran, or either-one 
contiguous



Pointer in-direction 
void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
                       Py_ssize_t *suboffsets, Py_ssize_t *indices) {
    char *pointer = (char*)buf;
    int i;
    for (i = 0; i < ndim; i++) {
        pointer += strides[i] * indices[i];
        if (suboffsets[i] >=0 ) {
            pointer = *((char**)pointer) + suboffsets[i];
        }
    }
    return (void*)pointer;
}

(void *) PyBuffer_GetPointer
        (PyBuffer *view, Py_ssize_t *indices);



Suboffsets
buf suboffsets = {0,-1}



New C-API
Name Purpose

PyObject_CheckBuffer Make sure getbuffer is present

PyObject_GetBuffer Call getbuffer if available

PyObject_ReleaseBuffer Call releasebuffer if available

PyBuffer_FromContiguous Copy to a buffered memory from contiguous memory

PyBuffer_ToContiguous Copy from a buffered memory to contiguous memory

PyObject_CopyData Copy data between two objects with the buffer interface

PyBuffer_IsContiguous True if buffer is contiguous (either C or Fortran depending on argument)

PyBuffer_FillContiguousStrides Fill a strides array belonging to a contiguous N-d array.

PyBuffer_FillInfo Fill the PyBuffer structure for simple 1-d buffer

PyMemoryView_Check Make sure the object is a MemoryView object

PyMemoryView_GetContiguous Get a contiguous MemoryView object from another object

PyMemoryView_FromObject Get a MemoryView object from an object using the buffer interface

PyMemoryView_FromMemory Get a MemoryView object from a PyBuffer struct.



MemoryView Object 
typedef struct {
    PyObject_HEAD
    PyObject *base;
    PyBuffer view;
} PyMemoryViewObject;

Methods Purpose
__getitem__ Multi-dimensional slicing

__setitem__ Multi-dimensional sliced setting

tobytes Create contiguous bytes

tolist Create a (nested) list

Attributes
format

itemsize

shape

strides

suboffsets

size

readonly

ndim



Struct-string syntax
Char. Description

t bit (number before states how many bits)

? platform _Bool

g long double  (unpacks to ctypes object)

c ucs-1 (latin-1) (unpacks to unicode)

u ucs-2 (unpacks to unicode)

w ucs-4 (unpacks to unicode)

O Python Object pointer

Z Complex of whatever the next specifier is (unpacks to complex)

& Pointer to whatever the next specifier is (unpacks to ctypes void_p)

T{} Structure (detailed layout should be inside {}) (unpacks to ctypes)

(k1,k2,...,kn) Multi-dimensional array of whatever comes next (unpacks to nested list)

:name: Optional name of the preceeding element

X{}
Pointer to a function (optional signature inside of {} with any return 
value preeceeded by -> and placed at the end)



Struct examples
struct {
   int ival;
   struct {
      unsigned short sval;
      unsigned char bval;
      unsigned char cval;
   } sub;
}

i:ival:
T{
  H:sval:
  B:bval:
  B:cval:
 }:sub:



Struct examples

struct {
   int ival;
   double data[16*4];
}

      i:ival:
(16,4)d:data:



Implications

• Should have standard way to share data 
among media libraries

• Should have standard way to share arrays 
among GUIs

• Should increase adoption of NumPy-like 
features by wider Python community

• Powerful struct/ctypes connection

• Maybe automatic compiled function call-
backs using function-pointer data 



Interested? 

• Google code Sprints (Aug. 22-25)

• Contact me for some Guidance before 
Tuesday morning (Aug. 21)


