The Future of IPython:
Interactive Parallel and
Distributed Computing

\{ Brian E. Granger
T}_H Tech-X Corporation

Fernando Perez
CU BOULDER University of Colorado

Benjamin Ragan-Kelly (student)
Santa Clara University

SciPy’06
Caltech

|IPython: An Enhanced Interactive
Python Shell

® |Python is an enhanced interactive Python shell
® |t is becoming the de facto shell for scientific computing in Python
® |ncluded with most major Linux distributions
e Capabilities:
® User extensible syntax httPZ//iP,Ython.SCip'Y.Ol"g

® GUI integration (wx, Qt, GTK, etc.)
® Seamless system shell access

® Dynamic object/namespace introspection: docstrings, attributes,
methods, source code

® Numbered input/output prompts with command history

® Session logging and restoring

® Embeddable

Goals

Create an open source architecture that enables parallel and

distributed programs to be developed, monitored, executed and
debugged interactively and collaboratively.

® All of IPython’s capabilities will be available over the wire.
® FEasy things should be easy.

® |t should integrate well with existing C/C++/Fortran/MPI
code.

® |t should support many different styles of parallelism: message
passing, task farming, distributed memory.

® Fully interactive work with up to 256 processors (latency <
0.1 sec).

® Wide range of hardware: laptops to NERSC supercomputers

Realities of Distributed
Scientific Computing

Scientific code is often written in in compiled langauges (C/
C++/Fortran).

This code takes a long time to execute.

While this code is running, nothing else (such as network
communications) can happen in process.

This is completely orthogonal to the asynchronous nature of
distributed, network based computing.

Because of the Global Interpreter Lock (GIL) threads don’t
provide a general solution to this problem.

Minimal Requirements for
Good Parallelism in Python

® Multiple processes.
® Non-blocking sockets.

® Asynchronous error/fault handling.

Architecture

- Manages the Engines
- Queue for each Engine
- Provides a truly non-blocking

IPython Controller asynchronous interface to a set of
Engines

Non blocking socke
using Twist

IPython Engine IPython Engine IPython Engine oo0

()Python virtual machines exposed to the
network. These can and will block!

Architecture

Multiple/simultaneous users/apps can connect to the Controller =

llaborati
ene6 Mozilla Firefox Start Page o
‘i::" ‘:“/ = E%] ﬁ} |Gl bt/ jwww.google.com/firefoxzelin ¥ [Cl* x seren grab keyboard
MPIY Python¥ Gmail Blog¥ NERSC

IPython
In [1]:

Firefox Start

Your App

HTTP/XML- RPC/S%tA/

IPython Controller A :
IPython Engine

Interactive Steering of
Traditional Parallel Codes

The IPython Engine can optionally
initialize MPI at startup.

User code can call wrapped C/C+

+/Fortran code that makes calls to
MPI.

We also support many of the
Python/MPI bindings.

The Controller and Frontend/
Clients don’t use MPI.

Full interactive control of a
traditional parallel app.

IPython Controller

IPython Engine + MPI

IPython Engine + MPI

IPython Engine + MPI

IPython Engine + MPI

Interactive and Parallel Data Analysis
of Massive Distributed Data Sets

Local machine

Remote cluster

|IPython Controller

IPython Engine IPython Engine IPython Engine

Distributed data set (hdf5,...)

Perry Greenfield

Load Balanced, Fault Tolerant
Task Farming

Incoming tasks <><>
Q

@ Completed tasks
Task queuc <<<<<<‘IPython Controller

L - . oA
IPython Engine ‘

The controller can handle
Task/Engine failure

New Engines can join at
any time

Status

® Most of the infrastructure for interactive parallel
and distributed is done.

® Working on testing/optimization/documentation.
® Beginning to implement the “IPythonic Features.”
® Watch ipython.scipy.org for updated info.

® Or check it out:

svh co http://ipython.scipy.org/svn/ipython/
ipython/branches/chainsaw ipythonl

http://ipython.scipy.org/moin/Design

