
The Future of IPython:
Interactive Parallel and
Distributed Computing

Brian E. Granger
Tech-X Corporation

Fernando Perez
University of Colorado

Benjamin Ragan-Kelly (student)
Santa Clara University

SciPy’06
Caltech

IPython: An Enhanced Interactive
Python Shell

• IPython is an enhanced interactive Python shell

• It is becoming the de facto shell for scientific computing in Python

• Included with most major Linux distributions

• Capabilities:

• User extensible syntax

• GUI integration (wx, Qt, GTK, etc.)

• Seamless system shell access

• Dynamic object/namespace introspection: docstrings, attributes,
methods, source code

• Numbered input/output prompts with command history

• Session logging and restoring

• Embeddable

http://ipython.scipy.org

Goals
Create an open source architecture that enables parallel and
distributed programs to be developed, monitored, executed and
debugged interactively and collaboratively.

• All of IPython’s capabilities will be available over the wire.

• Easy things should be easy.

• It should integrate well with existing C/C++/Fortran/MPI
code.

• It should support many different styles of parallelism: message
passing, task farming, distributed memory.

• Fully interactive work with up to 256 processors (latency <
0.1 sec).

• Wide range of hardware: laptops to NERSC supercomputers

Realities of Distributed
Scientific Computing

• Scientific code is often written in in compiled langauges (C/
C++/Fortran).

• This code takes a long time to execute.

• While this code is running, nothing else (such as network
communications) can happen in process.

• This is completely orthogonal to the asynchronous nature of
distributed, network based computing.

• Because of the Global Interpreter Lock (GIL) threads don’t
provide a general solution to this problem.

Minimal Requirements for
Good Parallelism in Python

• Multiple processes.

• Non-blocking sockets.

• Asynchronous error/fault handling.

Architecture

IPython Controller

IPython Engine IPython Engine IPython Engine

(I)Python virtual machines exposed to the
network. These can and will block!

Non blocking sockets
using Twisted

- Manages the Engines
- Queue for each Engine
- Provides a truly non-blocking
asynchronous interface to a set of
Engines

Architecture

IPython Controller
IPython Engine

IPython
In [1]:

Your App

IPython Engine
IPython Engine

IPython Engine

Multiple/simultaneous users/apps can connect to the Controller =
collaboration

HTTP/XML-RPC/SOAP/Custom protocols

• The IPython Engine can optionally
initialize MPI at startup.

• User code can call wrapped C/C+
+/Fortran code that makes calls to
MPI.

• We also support many of the
Python/MPI bindings.

• The Controller and Frontend/
Clients don’t use MPI.

• Full interactive control of a
traditional parallel app.

Interactive Steering of
Traditional Parallel Codes

IPython Controller

IPython Engine + MPI

IPython Engine + MPI

IPython Engine + MPI

IPython Engine + MPI

Interactive and Parallel Data Analysis
of Massive Distributed Data Sets

Distributed data set (hdf5, . . .)

IPython Engine IPython Engine IPython Engine

IPython Controller

Remote cluster

Local machine

Perry Greenfield

IPython
In [1]:

Load Balanced, Fault Tolerant
Task Farming

IPython Controller

Incoming tasks

Completed tasks

Task queue

IPython Engine

The controller can handle
Task/Engine failure

New Engines can join at
any time

IPython Engine
IPython Engine

IPython Engine

Status
• Most of the infrastructure for interactive parallel

and distributed is done.

• Working on testing/optimization/documentation.

• Beginning to implement the “IPythonic Features.”

• Watch ipython.scipy.org for updated info.

• Or check it out:
svn co http://ipython.scipy.org/svn/ipython/
ipython/branches/chainsaw ipython1

http://ipython.scipy.org/moin/Design

