
On providing a CAS for Python

Pearu Peterson
pearu.peterson@gmail.com

Centre for Nonlinear Studies, Estonia
Simula Research Laboratory, Norway

• Introduction — What is CAS? Why another CAS?
• Sympycore — development, comparisons, secret notes
• Conclusions

Abstract

During the last ten years there has been many attempts to provide a Computer Algebra System (CAS) for Python that
have important applications in code generation tools, for example. In most cases, one of the following approaches has
been proposed: wrap existing CAS libraries to Python, create Python interfaces to existing CAS programs, or implement
pure Python CAS from scratch. In this talk I will discuss pros and cons of these approaches as well as try to give an
overview of what is the current state with CAS-s for Python. Finally, a pure Python package, sympycore, will be
introduced as sufficiently efficient and robust implementation of a CAS for Python. For example, the sympycore speed
is comparable with the speed of many CAS-s that are implemented using a compiled language.

What is CAS?
Computer Algebra System (CAS) is a software program that
facilitates symbolic mathematics.
The core functionality of a CAS is manipulation of
mathematical expressions in symbolic form.

[Wikipedia]

Existing tools — Wikipedia lists more than 40 CAS-es:
• commercial/free,
• full-featured programs/problem specific libraries,
• in-house, C, C++, Haskell, Java, Lisp, etc programming

languages.

Our aim — provide a package to manipulate mathematical
expressions within a Python program.

Target applications — code generation for numerical applications,
arbitrary precision computations, etc in Python.

Possible approaches:
• wrap existing CAS libraries to Python: swiginac[GPL] (SWIG,

GiNaC, 2008), PyGiNaC[GPL] (Boost.Python, GiNaC, 2006),
SAGE[GPL] (NTL, Pari/GP, libSingular, etc.)

• create interfaces to CAS programs: Pythonica (Mathematica,
2004), SAGE[GPL] (Maxima, Axiom, Maple, Mathematica,
MuPAD, etc.)

• write a CAS package from scratch: Sympy[BSD],
Sympycore[BSD], Pymbolic[?] (2008), PySymbolic[LGPL] (2000),
etc

It is almost trivial to implement a simple and efficient Python
program for manipulating symbolic expressions but highly non-trivial
to generalize it to a full-featured and sufficiently efficient CAS

Some minimal set of CAS features
• Symbolic expressions: atomic (symbols, numbers) and composite (operation +

operands) expressions, inquire information.
• Pattern matching, substitutions of sub-expressions.
• Support for various mathematical concepts: arithmetics, calculus, polynomials,

matrices, sets, logic, functions, operators, etc.
• Simplifications to some canonical form:
(x + x) -> 2*x, (x and x) -> x, etc.

• Changes in the form of expressions: expanding, factorizations, rewriting.
• Simplifications with assumptions:
sqrt(x)**2 -> x iff x>0 is True.

• Calculus: differentation, integration, series, limits, etc.
• Arithmetics: booleans, integers, rational numbers, complex numbers, arbitrary

precision numbers
• Convert symbolic expressions to various forms: C/C++, Fortran, TeX, pretty-

printing, etc.
• . . .

A selection of available Python based CAS-es:
CAS Advanatages Disadvantages

Sage
most full-featured, lots of
developers (20–50), fastest
components

huge (≥ 800MB), ships more than
one needs, slow components(read:
interfaces)

Sympy pure Python, many developers (8–
15), many features

slow, core robustness needs
work, calculus oriented

Sympycore
fastest pure Python core (10–
300x faster than Sympy),
facilitates various algebras

not many features implemented,
few developers (2)

Sympycore — development
• About 10 000 LOC
• Test coverage is currently 65%
• Continuous control over performance

• Authors: Pearu Peterson, Fredrik Johansson

Sympycore versus Sympy and Swiginac
Executed code sympy / sympycore
Add(x,random integer,y), 2000x 39.0
Mul(x,random integer,y), 2000x 26.4
sum(x**i/i,i=1..400) 317
expand((x+z+y)**20 * (z+x)**9) 126
expand((x+2*y+3*z)**20).subs(x,z).subs(y,z) 32.2
f=(x/(1+sin(x**(y+x**2)))**2), f=f.diff(x), 5x 42.3
f=4*x**3+y**2*x**2+x+1, f=integrate(f), 10x 20.8
match((x*y**2)**sin(x+y**2), (v*w)**sin(v+w)) 9.87
polynomial division P(1,2,3,4,5)/Q(1,2,3/4) 333
fem_test.py 16.5

swiginac / sympycore
Add(x,random integer,y), 2000x 11.2
Mul(x,random integer,y), 2000x 4.55
sum(x**i/i,i=1..400) 48.5
expand((x+z+y)**20 * (z+x)**9) 0.700
expand((x+2*y+3*z)**20).subs(x,z).subs(y,z) 0.282
f=(x/(1+sin(x**(y+x**2)))**2), f=f.diff(x), 5x 0.633

• Sympy has lots of features, uses caching
• Sympycore concentrates on core performance, one small extension module
• Swiginac has less features, computation is fast (GiNaC), interface is slow

(SWIG)

Sympycore secret notes — implementation
Things to keep in mind:

• object creation in Python is slow
• function/method calls in Python are slow
• attribute access in Python is slow
• loops in Python are slow
• working with builtin types in Python can be fast (C speed)

Things to follow:
• avoid creating temporary objects, use singletons (is)
• avoid deep function calls, inline functions
• use local variables, remember attributes and global names
• avoid loops in Python
• take advantage of the speed of Python builtin types (dict, set, list, tuple)
• use profile results to decide which parts should be written in C
• with immutable objects: true inplace operations possible until hash calculation

Sympycore secret notes — design
Things to keep in mind:

• theories of algebraic structures may seem complex, following their logic
actually simplifies coding

• algorithms in text-books may be easy-to-understand but not always optimal
• there exist no ideal representation of mathematical concepts in a computer

program, efficiency depends on a particular application and used algorithms
Things to follow:

• try different data representations for a particular mathematical concept,
consider supporting multiple representation

• try different algorithms
• never underestimate the power of mathematics

Conclusions
• Sympycore — a research project, its aim is to seek out new high-performance

solutions to represent and manipulate symbolic expressions in Python language
• Sympycore — fastest Python based CAS core implementation
• Our goal is to work in the direction of making Sympycore usable for Sympy

