On providing a CAS for Python

Pearu Peterson
pearu.peterson@gmail.com

Centre for Nonlinear Studies, Estonia
Simula Research Laboratory, Norway

e Introduction — What is CAS? Why another CAS?
e Sympycore — development, comparisons, secret notes
e Conclusions

Abstract

During the last ten years there has been many attempts to provide a Computer Algebra System (CAS) for Python that
have important applications in code generation tools, for example. In most cases, one of the following approaches has
been proposed: wrap existing CAS libraries to Python, create Python interfaces to existing CAS programs, or implement
pure Python CAS from scratch. In this talk I will discuss pros and cons of these approaches as well as try to give an
overview of what is the current state with CAS-s for Python. Finally, a pure Python package, sympycore, will be
introduced as sufficiently efficient and robust implementation of a CAS for Python. For example, the sympycore speed
is comparable with the speed of many CAS-s that are implemented using a compiled language.

What is CAS?
Computer Algebra System (CAS) is a software program that
facilitates symbolic mathematics.
The core functionality of a CAS is manipulation of

mathematical expressions in symbolic form.
[Wikipedia]
Existing tools — Wikipedia lists more than 40 CAS-es:
e commercial/free,

e full-featured programs/problem specific libraries,

e in-house, C, C++, Haskell, Java, Lisp, etc programming
languages.

Our aim — provide a package to manipulate mathematical
expressions within a Python program.

Target applications — code generation for numerical applications,
arbitrary precision computations, efc in Python.

Possible approaches:

e wrap existing CAS libraries to Python: swiginac[GPL] (SWIG,
GiNaC, 2008), PyGiNaC[GPL] (Boost.Python, GiNaC, 2006),
SAGE[GPL] (NTL, Pari/GP, libSingular, etc.)

e create inferfaces to CAS programs: Pythonica (Mathematica,
2004), SAGE[GPL] (Maxima, Axiom, Maple, Mathematica,
MUuPAD, etc.)

e write a CAS package from scratch: Sympy[BSD],
Sympycore[BSD], Pymbolic[?] (2008), PySymbolic[LGPL] (2000),
etc

It is almost trivial to implement a simple and efficient Python
program for manipulating symbolic expressions but highly non-trivial
to generalize it to a full-featured and sufficiently efficient CAS

Some minimal set of CAS features

e Symbolic expressions: atomic (symbols, numbers) and composite (operation +
operands) expressions, inquire information.

e Pattern matching, substitutions of sub-expressions.

e Support for various mathematical concepts: arithmetics, calculus, polynomials,
matrices, sets, logic, functions, operators, etfc.

e Simplifications to some canonical form:
(x + x) —> 2*x, (x and x) —-> x,efc.

e Changes in the form of expressions: expanding, factorizations, rewriting.

e Simplifications with assumptions:
sqgrt (x) **2 —-> x iff x>0 is True.

e Calculus: differentation, integration, series, limits, etfc.

e Arithmetics: booleans, integers, rational numbers, complex numbers, arbitrary
precision numbers

e Convert symbolic expressions to various forms: C/C++, Fortran, TeX, pretty-
printing, etc.

A selection of available Python based CAS-es:

' CAS | Advanatages Disadvantages

most full-featured, lots of | huge (> 800MB), ships more than

Sage developers (20-50), fastest | one needs, slow components(read:
components interfaces)

Sympy pure Python, many developers (8- | slow, core robustness needs
15), many features work, calculus oriented
fastest pure Python core (10- .

Sympycore | 300x faster than Sympy), ?ZIV z‘gcgl szrxr“rsuzg)s Inhenesae,
facilitates various algebras P

Sympycore — development
e About 10 000 LOC

e Test coverage is currently 65%

e Continuous control over performance

10 —

test_egaluate_arith.py: Linux-2.6.19-4-amd64-x86 64-py2.5

stones

103 L i i i i i
500 600 . 700 . 0 0 000
test_evaluate_arith.py: (ﬂmux-%.% .22-f§-x86_é4-py2.5.1

10° —

PV ey
.e»,,-F-w i g WA

stones

103 I I I I I i
500 600 700 800 900 1000
revisions

e Authors: Pearu Peterson, Fredrik Johansson

8000

test_evaluate_arith.py: Linux-2.6.19-4-amd64-x86_64-py2.5.1

FODD o me e
6000
wn
¢ 5000
2
wn
4000
¥——> Add(x,y), i=0..100
W X+ity, i=0..100
3000 ¥——x X-iy, i=0..100
o Mul(x,i,y), i=0..100
w0 X¥i¥y, i=0..100 :
000 x/ify, i=0..100 TSR T T s T U T U TSt SO TS U TSR
w— evaluate 3#(1/2*x+2/3*y+4/5%z), 33x :
I I 1 1 I
940 960 980 1000 1020 1040
revisions
test_evaluate_arith.py: Linux-2.6.22-15-x86_64-py2.5.1
12000 Y
00
8000
v
@
c
=
[0}

6000

4000

2000

940

Add(x,i,y), i=0..100
x+i+y, i=0..100
x-iy, i=0..100
Mul(x,i,y), i=0..100

xfify, i=0..100
evaluate 3*(1/2%x+2/3*y+4/5%z), 33x

|
1000
revisions

T T
960 980

Sympycore versus Sympy and Swiginac

Executed code sympy / sympycore
Add (x, random integer,y), 2000x 39.0

Mul (x, random integer,y), 2000x 26.4

sum (x**i/i, i=1..400) 317

expand ((x+z+y) **20 * (z+x) **9) 126

expand ((x+2*y+3*z) **x20) .subs (x, z) . subs (y, z) 32.2
f=(x/ (1+sin (x** (y+x**2))) **x2),6 £f=f.diff (x), Bx 423
f=4xx*x*x3+y**x2xx*x*x2+x+1, f=integrate (£f), 10x 20.8
match ((x*xy**2) x*xsin (x+y**2), (v*w)**sin(v+w)) 9.87
polynomial division P(1,2,3,4,5)/0(1,2,3/4) 333

fem_test.py 16.5
swiginac / sympycore
Add (x, random integer,y), 2000x 11.2
Mul (x, random integer,y), 2000x 455
sum (x**i/i, i=1..400) 485
expand ((x+z+y) **20 * (z+x) **9) 0.700

expand ((x+2*y+3*z) **20) .subs (x, z) . subs (y, z) 0.282
f=(x/ (l+sin (x** (y+x**2))) *x*2),6 £=£f.diff(x),5x 0.633

e Sympy has lots of features, uses caching
e Sympycore concentrates on core performance, one small extension module

e Swiginac has less features, computation is fast (GiNaC), interface is slow
(SWIG)

Sympycore secret notes — implementation

Things to keep in mind:

e object creation in Python is slow

e function/method calls in Python are slow

e attribute access in Python is slow

e loops in Python are slow

e working with builtin types in Python can be fast (C speed)
Things to follow:

e avoid creating temporary objects, use singletons (is)

e avoid deep function calls, inline functions

e use local variables, remember attributes and global names

e avoid loops in Python

e take advantage of the speed of Python builtin types (dict, set, 1ist, tuple)

e use profile results to decide which parts should be written in C

e with immutable objects: true inplace operations possible until hash calculation

Sympycore secret notes — design

Things to keep in mind:

e theories of algebraic structures may seem complex, following their logic
actually simplifies coding

e algorithms in text-books may be easy-to-understand but not always optimal

e there exist no ideal representation of mathematical concepts in a computer
program, efficiency depends on a particular application and used algorithms

Things to follow:

e try different data representations for a particular mathematical concept,
consider supporting multiple representation

e try different algorithms

e never underestimate the power of mathematics

Number of executions per second

Performance history of Python based CAS-s
Executing: 3*(1/2*x + 2/3*y + 4/5%z) -> 3/2*X + 2*y + 12/5%z

10°
e o SymPy SVN
e e sympy-research branch R R
e e sympy-sandbox branch A A Eﬁiﬂac ‘ :
10°F e e Sympy Core SVN: 33 800 execs/sec _____ _____ _____ ______ ______ Sﬂgehbsmg”la‘"o _____
e e GiNaC: 180 000 exec/sec T : oo
e o Sage(libSingular): 110 000 exec/sec SR T T T A
e e Maxima(GCL): 19 400 exec/sec . i 11 @Sympycore g
e e pyginac: 15 700 execs/sec SRR R R ¢ ngﬁéga e
. e e swiginac: 13 400 execs/sec S “ .| Suiginac :
10 ¢ e e Maximal(clisp): 2 320 exec/sec SR A
e o symbolic: 540 execs/sec e
e e SymPy, Mercurial: 350 execs/sec L @
e o Sage(Maxima): 35 exec/sec A R S A S A S R 4
O

10°F

;Sagé(Méximé)

Y ISUUOUUR TUUD U UUUS TUU FUUUL ST FEUU Ut SUUE FUNU U DUNE FUUE UUNE U TN U THUU WUNHUNUS FEUS TN UUU0 A
10
o .00 .q° . .00 .00 .1 .1 .ol ot ol S el el ol e ol el o o 0 R R R D o2
Q0 QP QP Q0 Q0 QO Q! Q! O Ot Q! O O O O Q) O SO QP QP QP QP Q0 QP QP 10
\\)\ p\)g cJeQ OC" &0‘1 08"‘ \@(\ QG‘D Q\’O(pQ‘ \1\6\! \\)(\ \\)\ p\}g cJeQ OC" ‘\\0‘1 08(" \‘a(\ QGD Q\B(P‘Qﬁ ‘1\0\! \\)(\ \\)\ %\)g

Time

Conclusions

e Sympycore — a research project, its aim is fo seek out new high-performance
solutions to represent and manipulate symbolic expressions in Python language

e Sympycore — fastest Python based CAS core implementation
e Our goal is to work in the direction of making Sympycore usable for Sympy

