
SimPy – A Discrete Event
Simulation Package in Python

Dr. Klaus G. Müller (kgmuller at xs4all.nl)

EuroSciPy 2008 Leipzig, 26-27 July, 2008

About SimPy

• A Discrete Event Simulation (DES) package
– Process based
– Object oriented
– Modeled after Simula and Simscript

• Written in Python
– The only DES package in Python

• Open Source (LGPL)
• Development since 2002

– Prof. Tony Vignaux (Lead user specs, documentation),
Dr. Klaus Müller (Lead software)

– International community of contributors

Discrete Event Simulation

• Discrete-event simulation (DES):
– operation of a system is modeled as a

chronological sequence of events
– Each event occurs at an instant in time and

marks a change of state in the system
• Used to perform “what if” studies

(experiments) of existing or planned systems
by executing model on computer

What has SimPy been used
for?

• Teaching system simulation and Operations Research
courses (universities in New Zealand, US, Canada,
Venezuela, Spain, . . .)

• Simulation of epidemics
• Simulation of communications systems
• Simulation of computer hardware performance
• Simulation of nuclear processing facilities in support of

designing safeguards for nuclear non-proliferation
• Comparison of Personal Rapid Transit (PRT) and classic

rapid transit systems
• Simulation of air space surveillance
• Simulation of telescope management in observatory
•
• ? ? ? ?

SimPy benefits

• Open Source
• Totally written in Python
• Source code and –documentation part of

distribution
– Insight
– Extensibility

• Clean, small API
• Easy to use, flat learning curve
• Extensive documentation, course-tested

Quotes from a user

“coded in less than an hour; more than 8
hours for a similar Java SSJ simulation”
“31 lines for a complete queuing simulation
with statistics”
“more than 200 lines for a similar Java SSJ
simulation”
“performance is an order less than a similar
Java SSJ simulation”

From www.sic.rma.ac.be/~flapierr/divers/SimPy.pdf

http://www.sic.rma.ac.be/~flapierr/divers/

SimPy and Co-Routines in
Python

• SimPy basis: co-routines allow cooperative
multitasking

• Co-routines
– multiple entry points; suspending and resuming

of execution at certain locations
• Python has generators

– generator looks like a function but behaves like
an iterator

• yield statement passes a value back to a
parent routine

• Co-routines in SimPy
– generators+dispatcher routine

SimPy Models Processes by
Co-Routines

• SimPy simulations
– Interactions/synchronizations between process

entities over time
– At every synchronization point (event), process

entity releases control to dispatcher by yield
with payload
• Example: yield hold,self,tDelay

• SimPy process entity
– Class instance data = process state variables
– Generator = Process Execution Method

• A process’ lifecycle

A SimPy Process and its
Activation

SimPy Co-Routine Machinery

Process Synchronizations in
SimPy

• A SimPy process can wait for
– fixed time period (a delay)
– re-activation by another process
– resource to become available
– event to be signaled
– general condition (predicate of state variables)

• It can
– (Re-)activate another process
– Put itself to sleep
– Put another process to sleep
– Interrupt another process
– Preempt another process queuing for a resource

SimPy Module Structure and
User API

Python

Any Python
Libraries

API for SimPy Users

SimPy Models

SimPlot SimGUI

SimulationStepSimulationRTSimulationTraceSimulation

SimPy Modules/Libraries

• Simulation modules
– SimPy.Simulation : Discrete Event Simulation (DES)
– SimPy.SimulationTrace: DES with event trace
– SimPy.SimulationRT: DES with real time

synchronization
– SimPy.SimulationStep: DES with event stepping

under user control
• SimPy utility modules

– SimPy.SimGUI: Simulation GUI API
– SimPy.SimPlot: Basic plotting API

SimPy.Simulation:
Discrete Event Simulation

SimPy.Simulation providesNeeded for DES

Co-routines, based on Python
generators

Quasi-
parallelism

Dispatch loop in function simulateScheduler entity

Python’s Random libraryStochastic
distributions

class Monitor, class TallyData collectors

class Process, class Resource,
class Store, class Level

Entities

A SimPy Example:
Problem Scenario

• Messages arrive in a LAN
at a rate of about 1/minute
(calculated from 1000 data
points collected)

• They are processed by 2
expensive servers at
1 minute/message

• To investigate:
Could 4 cheaper, slower
servers (2 min./message)
do at least the same job?
– Figures of merit:

• Message delays
• Nr of messages delayed

Incoming
messages

LAN

Message Processing
Servers

Mapping Example
Model=>SimPy Objects

class Message(Process)

def generateMessages()

Message
source Messages

Buffer in
comms
handler

Servers

Resource(capacity=nrServers)

Abstract model

SimPy objects

Run!

SimPy.Simulation
Example Output

SimPy.SimulationTrace:
Opening the Black Box

• Insight into parallel processes and their interaction
difficult
– same problem occurs with simulation

• Module SimulationTrace traces all events to show
what is happening behind the scenes

• Just replace
from SimPy.Simulation import *

with
from SimPy.SimulationTrace import *

• Trace output can be redirected to a file
• Event types to be traced can be selected

View trace

SimPy.SimulationTrace
Example Output

SimPy.SimulationRT:
Synchronize With Real Time

• For simulation user interaction e.g. in game
applications or animation, events should appear to
be spaced in real time

• SimulationRT allows tying simulation time to wall
clock time

• Example:
simulate(real_time=True,relSpeed=0.2,until= …)
runs 1 simulation time unit in 5 real seconds

• Module works better under Windows than under
Unix or Linux
– Problem stems from time.clock()

Run!

SimPy.SimulationRT
Example Output

SimPy.SimulationStep:
Stepping Event by Event

• For event by event user control
– Debugging
– Insertion of events or parameter changes by user

• User-provided callback function gets called
for every event

Run!

SimPy.SimulationStep
Example Output

SimPy.SimGUI:
Graphical User Interface

• Support for developing simulation user GUI
– Point-and-click
– Simulation start
– Parameter changes
– Display/saving of results (raw and analyzed)
– Model description

• Tkinter-based simulation GUI framework

Run!

SimPy.SimGUI
Example Output

SimPy.SimPlot:
Plotting Simulation Results

• Simple, out-of-the-box plotting package
• Tkinter-based

– Derived from Konrad Hinsen’s plotting module
• Plots (time,value) time-series data from

Monitor instances
• Plot types:

– Line, bar, step, histogram, scatter
• Basic and advanced API

Run!

SimPy.SimPlot
Example Output

Publication-Quality Plotting
with Matplotlib

• SimPlot is only intended as quick, first-level
analysis tool

• Not optimal for publication quality plots
– File format limited to Postscript
– Limited plot types

• SciPy’s Matplotlib is recommended
– Easy interface to SimPy
– Great range of plot types/formats
– Many file formats (PNG, EMF, EPS, PDF, PS,

RAW, SVG)

Run!

Matplotlib
Example Output

SimPy Release 1.9.1
Documentation in Distribution

• User manual
• “Once over lightly” user manual
• Cheat sheet
• Two tutorials
• Manuals for all simulation and utility libraries
• Source code documentation in HTML

(automatically generated by Epydoc)
• Many SimPy simulation models

SimPy and SciPy

• Collaboration with/visibility in SciPy
community sought

• Future SimPy versions will have NumPy,
Matplotlib interfaces and documentation

• Inclusion in Enthought SciPy distribution
sought

SimPy Web Resources

• SimPy web site http://SimPy.SourceForge.Net

• Outstanding online simulation textbook by Prof.
Norman Matloff (U. of California, Davis, U.S.)
http://heather.cs.ucdavis.edu/~matloff/simcourse.html

• SimPy course notes by Prof. Tony Vignaux (Victoria U.,
Wellington, New Zealand)
http://www.mcs.vuw.ac.nz/courses/OPRE352/2008T2/Lecture-Notes/

• Downloads from SimPy web site
• SimPy wiki http://www.mcs.vuw.ac.nz/cgi-bin/wiki/SimPy

• Mailing lists for users, developers,
CVS commits

• CVS repository on SourceForge
http://sourceforge.net/cvs/?group_id=62366

http://SimPy.SourceForge.Net/
http://heather.cs.ucdavis.edu/~matloff/simcourse.html
http://www.mcs.vuw.ac.nz/courses/OPRE352/2008T2/Lecture-Notes/
http://www.mcs.vuw.ac.nz/cgi-bin/wiki/SimPy
http://sourceforge.net/cvs/?group_id=62366

