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Introduction

● Obtaining honest performance estimates from a 
machine learning experiment usually requires 
fulfilling a complex pipeline of simpler tasks

● Those steps can be organized inside a Data 
Analysis Protocol (DAP) tailored by the 
researcher as suitable for the investigated 
problem, typically a predictive classification or 
regression task



   

Introduction – Basic Example
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● Resampling: to avoid incorrect estimates of the prediction error



   

mlpy

● Python/NumPy based package
● Open Source
● Implement different flavors of the machine 

learning functions required in:
– Classification

– Feature-ranking

– Feature-lists-analysis



   

mlpy - Features

● High modularity

● Ease of use

● Computationally efficient
– intensive use of the NumPy module

– parts with higher computational costs are implemented as 
internal C functions

● Suited for general-purpose machine learning tasks

● Its elective application field is bioinformatics and, in 
particular, the analysis of high-throughput data:
– Genomics

– Proteomics



   

mlpy - Overview

● Main features can be divided into several 
groups according to their goals
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Classification

● Support Vector Machines (SVMs)

– Implemented in C

– Kernels:
● Linear
● Gaussian
● Polynomial
● Terminated Ramps

● Discriminant Analysis (DA)

– Fisher (FDA)

– Spectral Regression (SRDA)

● Nearest Neighbors (NN)

– Implemented in C



   

● Every classifier must be initialized with a 
specific set of parameters

● Two distinct methods are deployed for the 
training and the testing phases:
– compute(x, y): compute the model

– predict(p): predict model on a test-set

● Whenever possible, the real valued prediction 
can be obtained by the realpred variable

Classification



   

Classification - Example

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],      # first sample
...            [1.0, 2.0, 3.0, 2.0],      # second sample
...            [1.0, 2.0, 3.0, 1.0]])     # third sample
>>> y = array([1, -1, 1])                 # classes
>>>
>>> mysvm = svm(kernel = 'linear', C = 1) # initialize svm
>>> mysvm.compute(x, y)                   # compute svm
1     # svm convergence
>>>                                       
>>> p = array([4.0, 5.0, 6.0, 2.0])   # test point
>>> mysvm.predict(p)                  # predict svm model   
-1
>>> mysvm.realpred                    # real-valued prediction
-0.5



   

Feature Weighting

● Feature weights coming directly from 
classifiers:
– Support Vector Machines (SVMs) for each kernel

– Discriminant Analysis (DA)
● Fisher (FDA) – Cristianini method
● Spectral Regression (SRDA)

● Classifier-independent methods:
– Iterative RELIEF (I-RELIEF)

– Discrete Wavelet Transform (DWT)



   

Feature Weighting

● Every feature weighting method must be 
initialized with a specific set of parameters

● weights(x, y) method must be called to 
compute the feature weights

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],       # first sample
...            [1.0, 2.0, 3.0, 2.0],       # second sample
...            [1.0, 2.0, 3.0, 1.0]])      # third sample
>>> y = array([1, -1, 1])                  # classes
>>>
>>> myir = irelief(sigma = 1)              # initialize irelief
>>> myir.weights(x, y)            # compute the feature weights
array([ 0.,  0.,  0.,  1.])



   

Feature Ranking

● The feature weights are used for selecting and 
ranking purposes inside one of the 
implemented schemes
– Recursive Feature Elimination family (rfe, erfe, 

bisrfe, sqrtrfe, onerfe)

– Recursive Forward Selection family (rfs)

● A unique class for all the feature-ranking 
methods

● Compute with compute(x, y, w), where w 
is a feature weighting method



   

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],       # first sample
...            [1.0, 2.0, 3.0, 2.0],       # second sample
...            [1.0, 2.0, 3.0, 1.0]])      # third sample
>>> y = array([1, -1, 1])                  # classes
>>>
>>> myrank = ranking(method = 'rfe')  # initialize ranking class
>>> mysvm = svm()                     # initialize svm class
>>> myrank.compute(x, y, mysvm)       # compute feature ranking
array([3, 2, 1, 0])     # the feature '3' is the most significant

Feature Ranking - Example



   

Resampling Methods

● The classification and feature ranking 
operations can be organized within a sampling 
procedure:
– Textbook cross validation

– Monte-Carlo cross validation

– Leave-one-out cross validation

– User-defined train/test

● Stratification over labels is also available
● The functions return the sample indexes



   

Metric functions

● Performance assessment can be evaluated by a 
set of different measures (for binary classifiers):

– Error (global, for positive and for negative samples)

– Accuracy

– Sensitivity and Specificity

– Matthews Correlation Coefficient

– Area Under the ROC Curve
● Inputs: true labels and predictions
● Variability assessed by Standard Deviation or 

Bootstrap Confidence Intervals (implemented in C)



   

Feature List Analysis

● The ordered lists from the feature ranking 
experiments can be analyzed in terms of:
– Stability - Canberra indicator on top-k positions 

(implemented in C)

– Extraction indicator

– Mean position indicator

● An optimal list on top-k sublists can be retrieved 
(Borda Count)



   

Landscaping and Parameters Tuning Tools

● The package includes executable scripts to be 
used off-the-shelf for typical parameter tuning 
tasks such as SVM-kernel choice and optimization:
– svm-landscape

– fda-landscape

– nn-landscape

– srda-landscape

– irelief-sigma

● User can choose the resampling method, range 
and number of steps

● Error and MCC are retrieved for each step



   

Landscaping Tools - Example

svm-landscape for SVM regularization parameter (C) 
tuning

● Stratified Monte-Carlo cross validation (4 sets, 10 train/test pairs)
● Standardize data
● 4 steps of C parameter

$ svm-landscape -d data.dat -c 4 10 -S -s -m -5 -M -2 -p 4
stratified monte carlo cv (4 sets, 10 pairs)
C 1.000000e-05: error 0.225000, mcc 0.590779
C 1.000000e-04: error 0.225000, mcc 0.583044
C 1.000000e-03: error 0.212500, mcc 0.610503
C 1.000000e-02: error 0.100000, mcc 0.814758



   

R-kernlab VS mlpy
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Applications

● mlpy is the core of BioDCV (biodcv.fbk.eu) a distributed 
computing system for the complete validation of gene profiles

● mlpy is used by FBK-MPBA Research Unit for the MAQC-II 
project led by US Food and Drug Administration

● mlpy is now used on these datasets:

– Copy Number Variation Data

– Gene Expression Data (Microarray)

– Proteomic Data (Mass Spectra)

Data can easily reach dimension of thousands of samples 
described up to one million of features



   

Summary

● mlpy is a project of Predictive Models for Biological and 
Environmental Data Analysis (MPBA) Research Unit 
(mpba.fbk.eu) at Fondazione Bruno Kessler (FBK) 
(www.fbk.eu)

● mlpy is free software. It is licensed under the GNU General 
Public License (GPL) version 3

● Homepage: mlpy.fbk.eu

● Email: 

– albanese@fbk.eu

– jurman@fbk.eu

– visintainer@fbk.eu

– furlan@fbk.eu
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