

mlpy – Machine Learning Py
High-Performance Python/NumPy Based Package for Machine Learning

Davide Albanese, Stefano Merler, Giuseppe Jurman,
Roberto Visintainer, Samantha Riccadonna,

Silvano Paoli, Cesare Furlanello

FBK-MPBA, Trento, Italy

Introduction

● Obtaining honest performance estimates from a
machine learning experiment usually requires
fulfilling a complex pipeline of simpler tasks

● Those steps can be organized inside a Data
Analysis Protocol (DAP) tailored by the
researcher as suitable for the investigated
problem, typically a predictive classification or
regression task

Introduction – Basic Example

Data

Resampling

Train 1

Test 1

Train B

Test B

Compute
Model

Feature
Ranking

Prediction
Error

Compute
Model

Feature
Ranking

Prediction
Error

● Resampling: to avoid incorrect estimates of the prediction error

mlpy

● Python/NumPy based package
● Open Source
● Implement different flavors of the machine

learning functions required in:
– Classification

– Feature-ranking

– Feature-lists-analysis

mlpy - Features

● High modularity

● Ease of use

● Computationally efficient
– intensive use of the NumPy module

– parts with higher computational costs are implemented as
internal C functions

● Suited for general-purpose machine learning tasks

● Its elective application field is bioinformatics and, in
particular, the analysis of high-throughput data:
– Genomics

– Proteomics

mlpy - Overview

● Main features can be divided into several
groups according to their goals

Classification

SVM

FDA

SRDA

NN

Feature
Weighting

SVM

FDA

SRDA

I-RELIEF

DWT

Feature
Ranking

RFE

E-RFE

BIS-RFE

SQRT-RFE

ONE-RFE

RFS

Resampling
Methods

TextBook

MonteCarlo

LOO CV

User Defined

Metric
Functions

Error

Accuracy

Sensitivity

Specificity

MCC

AUC

Feature List
Analysis

Stability

Extractions

Mean Position

Borda

Landscaping and Parameter Tuning Tools

nn-landscapesrda-landscape

svm-landscape fda-landscape

irelief-sigma

Classification

● Support Vector Machines (SVMs)

– Implemented in C

– Kernels:
● Linear
● Gaussian
● Polynomial
● Terminated Ramps

● Discriminant Analysis (DA)

– Fisher (FDA)

– Spectral Regression (SRDA)

● Nearest Neighbors (NN)

– Implemented in C

● Every classifier must be initialized with a
specific set of parameters

● Two distinct methods are deployed for the
training and the testing phases:
– compute(x, y): compute the model

– predict(p): predict model on a test-set

● Whenever possible, the real valued prediction
can be obtained by the realpred variable

Classification

Classification - Example

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> mysvm = svm(kernel = 'linear', C = 1) # initialize svm
>>> mysvm.compute(x, y) # compute svm
1 # svm convergence
>>>
>>> p = array([4.0, 5.0, 6.0, 2.0]) # test point
>>> mysvm.predict(p) # predict svm model
-1
>>> mysvm.realpred # real-valued prediction
-0.5

Feature Weighting

● Feature weights coming directly from
classifiers:
– Support Vector Machines (SVMs) for each kernel

– Discriminant Analysis (DA)
● Fisher (FDA) – Cristianini method
● Spectral Regression (SRDA)

● Classifier-independent methods:
– Iterative RELIEF (I-RELIEF)

– Discrete Wavelet Transform (DWT)

Feature Weighting

● Every feature weighting method must be
initialized with a specific set of parameters

● weights(x, y) method must be called to
compute the feature weights

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> myir = irelief(sigma = 1) # initialize irelief
>>> myir.weights(x, y) # compute the feature weights
array([0., 0., 0., 1.])

Feature Ranking

● The feature weights are used for selecting and
ranking purposes inside one of the
implemented schemes
– Recursive Feature Elimination family (rfe, erfe,

bisrfe, sqrtrfe, onerfe)

– Recursive Forward Selection family (rfs)

● A unique class for all the feature-ranking
methods

● Compute with compute(x, y, w), where w
is a feature weighting method

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> myrank = ranking(method = 'rfe') # initialize ranking class
>>> mysvm = svm() # initialize svm class
>>> myrank.compute(x, y, mysvm) # compute feature ranking
array([3, 2, 1, 0]) # the feature '3' is the most significant

Feature Ranking - Example

Resampling Methods

● The classification and feature ranking
operations can be organized within a sampling
procedure:
– Textbook cross validation

– Monte-Carlo cross validation

– Leave-one-out cross validation

– User-defined train/test

● Stratification over labels is also available
● The functions return the sample indexes

Metric functions

● Performance assessment can be evaluated by a
set of different measures (for binary classifiers):

– Error (global, for positive and for negative samples)

– Accuracy

– Sensitivity and Specificity

– Matthews Correlation Coefficient

– Area Under the ROC Curve
● Inputs: true labels and predictions
● Variability assessed by Standard Deviation or

Bootstrap Confidence Intervals (implemented in C)

Feature List Analysis

● The ordered lists from the feature ranking
experiments can be analyzed in terms of:
– Stability - Canberra indicator on top-k positions

(implemented in C)

– Extraction indicator

– Mean position indicator

● An optimal list on top-k sublists can be retrieved
(Borda Count)

Landscaping and Parameters Tuning Tools

● The package includes executable scripts to be
used off-the-shelf for typical parameter tuning
tasks such as SVM-kernel choice and optimization:
– svm-landscape

– fda-landscape

– nn-landscape

– srda-landscape

– irelief-sigma

● User can choose the resampling method, range
and number of steps

● Error and MCC are retrieved for each step

Landscaping Tools - Example

svm-landscape for SVM regularization parameter (C)
tuning

● Stratified Monte-Carlo cross validation (4 sets, 10 train/test pairs)
● Standardize data
● 4 steps of C parameter

$ svm-landscape -d data.dat -c 4 10 -S -s -m -5 -M -2 -p 4
stratified monte carlo cv (4 sets, 10 pairs)
C 1.000000e-05: error 0.225000, mcc 0.590779
C 1.000000e-04: error 0.225000, mcc 0.583044
C 1.000000e-03: error 0.212500, mcc 0.610503
C 1.000000e-02: error 0.100000, mcc 0.814758

R-kernlab VS mlpy

100 200 500 1000 2000 5000

0

0,1

0,2

0,3

0,4

0,5

0,6

Linear SVM - 30 Samples

R-kernlab
mlpy

Number of Features

C
om

pu
tin

g
Ti

m
e

(s
)

Applications

● mlpy is the core of BioDCV (biodcv.fbk.eu) a distributed
computing system for the complete validation of gene profiles

● mlpy is used by FBK-MPBA Research Unit for the MAQC-II
project led by US Food and Drug Administration

● mlpy is now used on these datasets:

– Copy Number Variation Data

– Gene Expression Data (Microarray)

– Proteomic Data (Mass Spectra)

Data can easily reach dimension of thousands of samples
described up to one million of features

Summary

● mlpy is a project of Predictive Models for Biological and
Environmental Data Analysis (MPBA) Research Unit
(mpba.fbk.eu) at Fondazione Bruno Kessler (FBK)
(www.fbk.eu)

● mlpy is free software. It is licensed under the GNU General
Public License (GPL) version 3

● Homepage: mlpy.fbk.eu

● Email:

– albanese@fbk.eu

– jurman@fbk.eu

– visintainer@fbk.eu

– furlan@fbk.eu

mailto:albanese@fbk.eu
mailto:jurman@fbk.eu
mailto:visintainer@fbk.eu

