mlpy — Machine Learning Py

High-Performance Python/NumPy Based Package for Machine Learning

Davide Albanese, Stefano Merler, Giuseppe Jurman,
Roberto Visintainer, Samantha Riccadonna,
Silvano Paoli, Cesare Furlanello

FBK-MPBA, Trento, Italy

mipy -3¢

FONDAZIONE

machine learning py BRUNO KESSLER




Machine Learning Tasks

Classification

e s sample

DZ{SiE<Xi,yi)€|RnXY,i= 1,...,m}=> f‘.IRn—>Y » {x } features

f(X)Ny * y. label

« The goal: finding a function that discriminates the two sets of data

 No unique solution

1A 0
O —
~_ m g . _ y=1 Example:
e o ~_ " = - . 2 features, x and x.
o o~
® o - o YE{—]_,]_}
o ~
® O
o y=1
> 2




Machine Learning Tasks

Feature Selection
* |In most classification models, identifying the more relevant
features is as important as achieving high accuracy

* Very important in building predictors on high-throughput
bioinformatics (MRNA and DNA arrays, proteomics, ...)

Example: Example:
o« 2 features e 8 features
. feature X, is the most relevant o feature X, X, and X, are the most relevant
X
1A
o | |
® o ® N B |
o ¢ | L H B Feature
importance
o 0 © | m N
O g 0§ H I
, - ia
)'( * x4 x7 x0 x6 x2 x5 x3 x1




Machine Learning Tasks

Performance Evaluation

Compute Prediction
Model Error

Data

‘ Overfitting phenomena

Obtaining honest performance estimates from a Machine Learning experiment usually

requires fulfilling a complex pipeline of simpler tasks

Resampling

Feature Compute Prediction \
—> >

Train 1

Test 1

Average
> Prediction
| Error

Data |—P»

Train B

Feature Compute S Prediction
—> >

)

Test B




mlpy

* Python/NumPy based package m &py
machine learning py

* Implements different flavors of the machine learning
functions required in:

- Classification
- Feature-ranking
- Feature-lists-analysis

» Allows researchers to easily build customized
combinations of complex pipelines



Main Features

» Suited for general-purpose machine learning
tasks

» Elective application field: bioinformatics on
high-throughput data

* High modularity
» Support of rapid prototyping of new algorithms
 Ease of use

* Open Source (GPLv3)



Main Features

Computational efficience and low memory use

- intensive use of the NumPy module

— parts with higher computational costs are implemented as internal
C functions

Source Code size: 464 KB
- ~3000 lines of ANSI C code, ~2000 lines of Python code
Multiplatform

- Unix and Linux Systems .«[

- MS Windows Systems --—:.__,,_ -
Requires: — ssE=c=
_ Python =924 ':::H o s = == .:‘.

- NumPy >=1.0.3 mpba.fbk.eu



Overview

mlpy - version 1.2.7

Classification Feature Feature Resampling Metric Feature List
Weighting Ranking Methods Functions Analysis

SV RFE TextBook Error Stability
FDA E-RFE MonteCarlo Accuracy Extractions
SRDA BIS-RFE LOO CV Sensitivity Mean Position
PD SQRT-RFE User Defined Specificity Borda
I-RELIEF ONE-RFE MCC

RFS

Landscaping and Parameter Tuning Tools

svm-landscape fda-landscape pda-landscape

srda-landscape irelief-sigma nn-landscape




Classification

Implemented Algorithms

« Support Vector Machines (SVMSs) [Vapnik, 1995]

- With Sequential Minimal Optimization (SMO) algorithm
- Implemented in C

— Kernels: Linear, Gaussian, Polynomial, Terminated Ramps [Merler and
Jurman, 2006]

* Nearest Neighbors (NN) [Cover and Hart, 1967]
- Implemented in C

* Discriminant Analysis (DA)
- Fisher (KFDA) [Mika et al., 2001]

- Penalized (PDA) [Ghosh, 2003]
- Spectral Regression (SRDA) [Cai et al., 2008]



Classification

Usage

» Every classifier must be initialized with a
specific set of parameters

* Two distinct methods are deployed for the
training and the testing phases:

— conpute(x, VY): computethe model
— predi ct (p): predict model on a test-set

 \Whenever possible, the real valued prediction
Is stored in the internal r eal pr ed variable



>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
1
>>>
>>>
>>>
-1
>>>
-0.5

Classification

Example
from nunpy inport *
frommpy inport *
Xx = array([[1.0, 2.0, 3.0, 1.0], # first sanple
[1.0, 2.0, 3.0, 2.0], # second sanpl e
[1.0, 2.0, 3.0, 1.0]]) # third sanple
y = array([1, -1, 1]) # cl asses
mysvm = svn(kernel = 'linear', C = 1) initialize svm

#
# conpute svm
# sSvm conver gence

mysvm conput e( X, Yy)

p = array([4.0, 5.0, 6.0, 2.0]) # test point
mysvm predi ct (p) # predict svm nodel

mysvm r eal pred # real -val ued prediction

11



Feature Weighting

Implemented Algorithms

e Classifier-derived methods:

- Support Vector Machines (SVMs) for each kernel
— Discriminant Analysis (DA)

e Fisher (KFDA) — Cristianini method [Cristianini and Shawe-
Taylor, 2006]

» Spectral Regression (SRDA)
* Penalized (PDA)

e Classifier-independent methods:

— lterative RELIEF (I-RELIEF) [Sun, 2007]

- Discrete Wavelet Transform (DWT) [Subramani et al.,
20006]

12



Feature Weighting

Usage and Example

» Every feature weighting method must be initialized
with a specific set of parameters

« wel ghts(x, y) method must be called to compute
the feature weights

>>> from nunpy i nport *

>>> fromm py iInport *
>>>

>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sanple

[1.0, 2.0, 3.0, 2.0], # second sanpl e
[1.0, 2.0, 3.0, 1.0]]) # third sanple
>>>y = array([1, -1, 1]) # cl asses
>>>
>>> nyir = irelief(sigm = 1) #initialize irelief
>>> nyir.wei ghts(x, vy) # conpute the feature weights

array([ 0., 0., 0., 1.]) 13



Feature Ranking

* The feature weights are used for selecting and ranking
purposes inside one of the implemented schemes

— Recursive Feature Elimination family [Guyon et al., 2002]
(RFE, ERFE [Furlanello et al., 2003], BISRFE, SQRTRFE, ONERFE)

Algorithm
Repeat
 Eliminate (a group of) the least relevant features
* Add them at the bottom of the ranked list
* Re-compute the feature weights on the reduced set of variables

Until all features are ordered

- Recursive Forward Selection family [Louw and Steel, 2006]
(RFS)

14



Feature Ranking

Usage and Example

» All ranking methods are included in a single class

« Rank by conput e(x, y, W), where wis a feature
weighting method

>>> from nunpy i nport *

>>> fromm py inport *
>>>

>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sanple
[1.0, 2.0, 3.0, 2.0], # second sanpl e
. [1.0, 2.0, 3.0, 1.0]]) # third sanple
>>> vy = array([1, -1, 1]) # cl asses
>>>
>>> nyrank = ranking(nmethod = 'rfe') # initialize ranking class
>>> nmysvm = svi() # initialize svm cl ass
>>> nyrank. conpute(x, y, nmysvm # conpute feature ranking

array([3, 2, 1, 0]) # the feature '3" is the nost significant
15



Resampling Methods

* A few sampling procedures available:

- Textbook (k-fold) cross validation
- Monte-Carlo cross validation

— Leave-one-out cross validation

- User-defined train/test

o Stratification over labels is also available

* The functions return a list of tuples containing
the train and the test sample indexes

16



Metric functions

* Performance assessment can be evaluated by a
set of different measures (for binary classifiers):

— Error (global, for positive and for negative samples)
— Accuracy

- Sensitivity and Specificity

- Matthews Correlation Coefficient

- Area Under the ROC Curve (AUC)

* Inputs: true labels and predictions

» Variability assessed by Standard Deviation or
Bootstrap Confidence Intervals (implemented in C)

17



Feature List Analysis

* The ordered lists from the feature ranking
experiments can be analyzed in terms of:

- Stability - Canberra indicator on top-k positions
(implemented in C) [Jurman et al., 2008]

— Extraction indicator
- Mean position indicator

* An optimal list on top-k sublists can be retrieved
(Borda Count [JC de Borda, 1781])

18



Landscaping and Parameters Tuning Tools

* The package includes executable scripts to be
used off-the-shelf for landscaping and parameter

tuning tasks:

svm-landscape srda-landscape
fda-landscape pda-landscape
nn-landscape irelief-sigma

* User can choose the resampling method, range
and number of steps

e Error, MCC and Canberra Distance are retrieved
for each step

19



Landscaping Tools

Example

svm | andscape for SVM regularization parameter (C) tuning

o Stratified Monte-Carlo cross validation
 Standardize data
* 4 steps of C parameter

$ svm | andscape -d data.dat -c 4 10 -S-s -m-5 -M-2 -p 4
stratified nonte carlo cv (4 sets, 10 pairs)
C 1. 000000e-05: error 0.225000, ntc 0.590779
C 1. 000000e-04: error 0.225000, ntc 0.583044
C 1.000000e-03: error 0.212500, ntc 0.610503
C 1. 000000e-02: error 0.100000, ntc 0.814758

— .

0,25 1

0,2 0,8
0,6
M Error 0,4 B MCC
0 20

0,15
0,1
C=1e-5 C=1e4 C=1e-3 C=1e-2 C=1e-5 C=1e4 C=1e-3 C=1e-2

0,05
0




Applications

mlpy is the core of BioDCV (biodcv.fbk.eu) a distributed
computing system for biomarker discovery

mlipy is used by FBK-MPBA Research Unit for the MAQC-II
project led by US Food and Drug Administration

Runs on HPC facilities, Linux cluster at FBK and European Grid
for E-sciencE (EGEE)

mlpy is now used on datasets with dimension of thousands of
samples and millions of features:

— Copy Number Variation (CNVs)
- Single Nucleotide Polymorphism (SNP)
- Gene Expression (Microarray)

- Proteomic (Mass Spectra) 1



Info

mlpy is a project of:

Predictive Models for Biological and Environmental Data
Analysis (MPBA) Research Unit (mpba.fbk.eu)

at Fondazione Bruno Kessler (FBK) (www.fbk.eu)

Partially supported by AIRC-IFOM

mlpy is free software. It is licensed under the GNU
General Public License (GPL) version 3

Homepage: mipy.fbk.eu

22



