
1

mlpy – Machine Learning Py
High-Performance Python/NumPy Based Package for Machine Learning

Davide Albanese, Stefano Merler, Giuseppe Jurman,
Roberto Visintainer, Samantha Riccadonna,

Silvano Paoli, Cesare Furlanello

FBK-MPBA, Trento, Italy

2

Machine Learning Tasks
Classification

D={si≡xi , y i∈ℝ
n
×Y , i=1,...,m }⇒{f :ℝ

n
Y

f x ≈y

● s
i
 sample

● {x
i
} features

● y
i
 label

y=1

y=1

x
0

x
1

● The goal: finding a function that discriminates the two sets of data

● No unique solution

Y∈{−1,1}

Example:
● 2 features, x

0
 and x

1

●

3

Machine Learning Tasks
Feature Selection

● In most classification models, identifying the more relevant
features is as important as achieving high accuracy

● Very important in building predictors on high-throughput
bioinformatics (mRNA and DNA arrays, proteomics, ...)

x
0

x
1

x
0

* x4 x7 x0 x6 x2 x5 x3 x1
0

1

2

3

4

5

6

7

8

9

10

Feature
importance

Example:

● 2 features
● feature x

0
 is the most relevant

Example:

● 8 features
● feature x

4
, x

7
 and x

0
 are the most relevant

4

Machine Learning Tasks
Performance Evaluation

Obtaining honest performance estimates from a Machine Learning experiment usually
requires fulfilling a complex pipeline of simpler tasks

Data

Resampling

Train 1

Test 1

Train B

Test B

Compute
Model

Feature
Ranking

Prediction
Error

Compute
Model

Feature
Ranking

Prediction
Error

Average
Prediction

Error}

Overfitting phenomenaData
Prediction

Error
Compute

Model

5

mlpy

● Python/NumPy based package

● Implements different flavors of the machine learning
functions required in:

– Classification

– Feature-ranking

– Feature-lists-analysis

● Allows researchers to easily build customized
combinations of complex pipelines

6

Main Features
● Suited for general-purpose machine learning

tasks
● Elective application field: bioinformatics on

high-throughput data

● High modularity
● Support of rapid prototyping of new algorithms
● Ease of use

● Open Source (GPLv3)

7

Main Features

● Computational efficience and low memory use

– intensive use of the NumPy module

– parts with higher computational costs are implemented as internal
C functions

● Source Code size: 464 KB

– ~3000 lines of ANSI C code, ~2000 lines of Python code

● Multiplatform

– Unix and Linux Systems

– MS Windows Systems

● Requires:

– Python >= 2.4

– NumPy >= 1.0.3 mpba.fbk.eu

8

Overview

Classification

SVM

FDA

SRDA

NN

Feature
Weighting

SVM

FDA

SRDA

I-RELIEF

DWT

Feature
Ranking

RFE

E-RFE

BIS-RFE

SQRT-RFE

ONE-RFE

RFS

Resampling
Methods

TextBook

MonteCarlo

LOO CV

User Defined

Metric
Functions

Error

Accuracy

Sensitivity

Specificity

MCC

AUC

Feature List
Analysis

Stability

Extractions

Mean Position

Borda

Landscaping and Parameter Tuning Tools

nn-landscapesrda-landscape

svm-landscape fda-landscape

irelief-sigma

PDA PDA

pda-landscape

mlpy version 1.2.7

9

Classification
Implemented Algorithms

● Support Vector Machines (SVMs) [Vapnik, 1995]

– With Sequential Minimal Optimization (SMO) algorithm

– Implemented in C

– Kernels: Linear, Gaussian, Polynomial, Terminated Ramps [Merler and
Jurman, 2006]

● Nearest Neighbors (NN) [Cover and Hart, 1967]

– Implemented in C

● Discriminant Analysis (DA)

– Fisher (KFDA) [Mika et al., 2001]

– Penalized (PDA) [Ghosh, 2003]

– Spectral Regression (SRDA) [Cai et al., 2008]

10

● Every classifier must be initialized with a
specific set of parameters

● Two distinct methods are deployed for the
training and the testing phases:
– compute(x, y): compute the model

– predict(p): predict model on a test-set

● Whenever possible, the real valued prediction
is stored in the internal realpred variable

Classification
Usage

11

Classification
Example

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> mysvm = svm(kernel = 'linear', C = 1) # initialize svm
>>> mysvm.compute(x, y) # compute svm
1 # svm convergence
>>>
>>> p = array([4.0, 5.0, 6.0, 2.0]) # test point
>>> mysvm.predict(p) # predict svm model
-1
>>> mysvm.realpred # real-valued prediction
-0.5

12

Feature Weighting
Implemented Algorithms

● Classifier-derived methods:
– Support Vector Machines (SVMs) for each kernel

– Discriminant Analysis (DA)
● Fisher (KFDA) – Cristianini method [Cristianini and Shawe-

Taylor, 2006]
● Spectral Regression (SRDA)
● Penalized (PDA)

● Classifier-independent methods:
– Iterative RELIEF (I-RELIEF) [Sun, 2007]

– Discrete Wavelet Transform (DWT) [Subramani et al.,
2006]

13

Feature Weighting
Usage and Example

● Every feature weighting method must be initialized
with a specific set of parameters

● weights(x, y) method must be called to compute
the feature weights

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> myir = irelief(sigma = 1) # initialize irelief
>>> myir.weights(x, y) # compute the feature weights
array([0., 0., 0., 1.])

14

Feature Ranking

● The feature weights are used for selecting and ranking
purposes inside one of the implemented schemes

– Recursive Feature Elimination family [Guyon et al., 2002]
(RFE, ERFE [Furlanello et al., 2003], BISRFE, SQRTRFE, ONERFE)

– Recursive Forward Selection family [Louw and Steel, 2006]
(RFS)

Algorithm

Repeat

● Eliminate (a group of) the least relevant features

● Add them at the bottom of the ranked list

● Re-compute the feature weights on the reduced set of variables

Until all features are ordered

15

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0], # first sample
... [1.0, 2.0, 3.0, 2.0], # second sample
... [1.0, 2.0, 3.0, 1.0]]) # third sample
>>> y = array([1, -1, 1]) # classes
>>>
>>> myrank = ranking(method = 'rfe') # initialize ranking class
>>> mysvm = svm() # initialize svm class
>>> myrank.compute(x, y, mysvm) # compute feature ranking
array([3, 2, 1, 0]) # the feature '3' is the most significant

Feature Ranking
Usage and Example

● All ranking methods are included in a single class

● Rank by compute(x, y, w), where w is a feature
weighting method

16

Resampling Methods

● A few sampling procedures available:
– Textbook (k-fold) cross validation

– Monte-Carlo cross validation

– Leave-one-out cross validation

– User-defined train/test

● Stratification over labels is also available
● The functions return a list of tuples containing

the train and the test sample indexes

17

Metric functions

● Performance assessment can be evaluated by a
set of different measures (for binary classifiers):

– Error (global, for positive and for negative samples)

– Accuracy

– Sensitivity and Specificity

– Matthews Correlation Coefficient

– Area Under the ROC Curve (AUC)
● Inputs: true labels and predictions
● Variability assessed by Standard Deviation or

Bootstrap Confidence Intervals (implemented in C)

18

Feature List Analysis

● The ordered lists from the feature ranking
experiments can be analyzed in terms of:
– Stability - Canberra indicator on top-k positions

(implemented in C) [Jurman et al., 2008]

– Extraction indicator

– Mean position indicator

● An optimal list on top-k sublists can be retrieved
(Borda Count [JC de Borda, 1781])

19

Landscaping and Parameters Tuning Tools

● The package includes executable scripts to be
used off-the-shelf for landscaping and parameter
tuning tasks:

● User can choose the resampling method, range
and number of steps

● Error, MCC and Canberra Distance are retrieved
for each step

svmlandscape
fdalandscape
nnlandscape

srdalandscape
pdalandscape
ireliefsigma

20

Landscaping Tools
Example

svm-landscape for SVM regularization parameter (C) tuning

● Stratified Monte-Carlo cross validation
● Standardize data
● 4 steps of C parameter

$ svm-landscape -d data.dat -c 4 10 -S -s -m -5 -M -2 -p 4
stratified monte carlo cv (4 sets, 10 pairs)
C 1.000000e-05: error 0.225000, mcc 0.590779
C 1.000000e-04: error 0.225000, mcc 0.583044
C 1.000000e-03: error 0.212500, mcc 0.610503
C 1.000000e-02: error 0.100000, mcc 0.814758

C=1e-5 C=1e-4 C=1e-3 C=1e-2
0

0,05

0,1

0,15

0,2

0,25

Error

C=1e-5 C=1e-4 C=1e-3 C=1e-2
0

0,2

0,4

0,6

0,8

1

MCC

21

Applications

● mlpy is the core of BioDCV (biodcv.fbk.eu) a distributed
computing system for biomarker discovery

● mlpy is used by FBK-MPBA Research Unit for the MAQC-II
project led by US Food and Drug Administration

● Runs on HPC facilities, Linux cluster at FBK and European Grid
for E-sciencE (EGEE)

● mlpy is now used on datasets with dimension of thousands of
samples and millions of features:

– Copy Number Variation (CNVs)

– Single Nucleotide Polymorphism (SNP)

– Gene Expression (Microarray)

– Proteomic (Mass Spectra)

22

Info

● mlpy is a project of:

Predictive Models for Biological and Environmental Data
Analysis (MPBA) Research Unit (mpba.fbk.eu)

at Fondazione Bruno Kessler (FBK) (www.fbk.eu)

● Partially supported by AIRC-IFOM

● mlpy is free software. It is licensed under the GNU
General Public License (GPL) version 3

● Homepage: mlpy.fbk.eu

