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Machine Learning Tasks
Classification
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● The goal: finding a function that discriminates the two sets of data

● No unique solution
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Machine Learning Tasks
Feature Selection

● In most classification models, identifying the more relevant 
features is as important as achieving high accuracy

● Very important in building predictors on high-throughput 
bioinformatics (mRNA and DNA arrays, proteomics, ...)
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Machine Learning Tasks
Performance Evaluation

Obtaining honest performance estimates from a Machine Learning experiment usually 
requires fulfilling a complex pipeline of simpler tasks
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mlpy

● Python/NumPy based package

● Implements different flavors of the machine learning 
functions required in:

– Classification

– Feature-ranking

– Feature-lists-analysis

● Allows researchers to easily build customized 
combinations of complex pipelines
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Main Features
● Suited for general-purpose machine learning 

tasks
● Elective application field: bioinformatics on 

high-throughput data

● High modularity
● Support of rapid prototyping of new algorithms
● Ease of use

● Open Source (GPLv3)
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Main Features

● Computational efficience and low memory use 

– intensive use of the NumPy module

– parts with higher computational costs are implemented as internal 
C functions

● Source Code size: 464 KB

– ~3000 lines of ANSI C code, ~2000 lines of Python code

● Multiplatform

– Unix and Linux Systems

– MS Windows Systems

● Requires:

– Python >= 2.4

– NumPy >= 1.0.3 mpba.fbk.eu
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Overview

Classification
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Classification
Implemented Algorithms

● Support Vector Machines (SVMs) [Vapnik, 1995]

– With Sequential Minimal Optimization (SMO) algorithm

– Implemented in C

– Kernels: Linear, Gaussian, Polynomial, Terminated Ramps [Merler and 
Jurman, 2006]

● Nearest Neighbors (NN) [Cover and Hart, 1967]

– Implemented in C

● Discriminant Analysis (DA)

– Fisher (KFDA) [Mika et al., 2001]

– Penalized (PDA) [Ghosh, 2003]

– Spectral Regression (SRDA) [Cai et al., 2008]
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● Every classifier must be initialized with a 
specific set of parameters

● Two distinct methods are deployed for the 
training and the testing phases:
– compute(x, y): compute the model

– predict(p): predict model on a test-set

● Whenever possible, the real valued prediction 
is stored in the internal realpred variable

Classification
Usage
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Classification
Example

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],      # first sample
...            [1.0, 2.0, 3.0, 2.0],      # second sample
...            [1.0, 2.0, 3.0, 1.0]])     # third sample
>>> y = array([1, -1, 1])                 # classes
>>>
>>> mysvm = svm(kernel = 'linear', C = 1) # initialize svm
>>> mysvm.compute(x, y)                   # compute svm
1     # svm convergence
>>>                                       
>>> p = array([4.0, 5.0, 6.0, 2.0])   # test point
>>> mysvm.predict(p)                  # predict svm model   
-1
>>> mysvm.realpred                    # real-valued prediction
-0.5
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Feature Weighting
Implemented Algorithms

● Classifier-derived methods:
– Support Vector Machines (SVMs) for each kernel

– Discriminant Analysis (DA)
● Fisher (KFDA) – Cristianini method [Cristianini and Shawe-

Taylor, 2006]
● Spectral Regression (SRDA)
● Penalized (PDA)

● Classifier-independent methods:
– Iterative RELIEF (I-RELIEF) [Sun, 2007]

– Discrete Wavelet Transform (DWT) [Subramani et al., 
2006]
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Feature Weighting
Usage and Example

● Every feature weighting method must be initialized 
with a specific set of parameters

● weights(x, y) method must be called to compute 
the feature weights

>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],       # first sample
...            [1.0, 2.0, 3.0, 2.0],       # second sample
...            [1.0, 2.0, 3.0, 1.0]])      # third sample
>>> y = array([1, -1, 1])                  # classes
>>>
>>> myir = irelief(sigma = 1)              # initialize irelief
>>> myir.weights(x, y)            # compute the feature weights
array([ 0.,  0.,  0.,  1.])
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Feature Ranking

● The feature weights are used for selecting and ranking 
purposes inside one of the implemented schemes

– Recursive Feature Elimination family [Guyon et al., 2002]    
(RFE, ERFE [Furlanello et al., 2003], BISRFE, SQRTRFE, ONERFE) 

– Recursive Forward Selection family [Louw and Steel, 2006] 
(RFS)

Algorithm

Repeat

● Eliminate (a group of) the least relevant features

● Add them at the bottom of the ranked list

● Re-compute the feature weights on the reduced set of variables

Until all features are ordered
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>>> from numpy import *
>>> from mlpy import *
>>>
>>> x = array([[1.0, 2.0, 3.0, 1.0],       # first sample
...            [1.0, 2.0, 3.0, 2.0],       # second sample
...            [1.0, 2.0, 3.0, 1.0]])      # third sample
>>> y = array([1, -1, 1])                  # classes
>>>
>>> myrank = ranking(method = 'rfe')  # initialize ranking class
>>> mysvm = svm()                     # initialize svm class
>>> myrank.compute(x, y, mysvm)       # compute feature ranking
array([3, 2, 1, 0])     # the feature '3' is the most significant

Feature Ranking
Usage and Example

● All ranking methods are included in a single class

● Rank by compute(x, y, w), where w is a feature 
weighting method
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Resampling Methods

● A few sampling procedures available:
– Textbook (k-fold) cross validation

– Monte-Carlo cross validation

– Leave-one-out cross validation

– User-defined train/test

● Stratification over labels is also available
● The functions return a list of tuples containing 

the train and the test sample indexes
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Metric functions

● Performance assessment can be evaluated by a 
set of different measures (for binary classifiers):

– Error (global, for positive and for negative samples)

– Accuracy

– Sensitivity and Specificity

– Matthews Correlation Coefficient

– Area Under the ROC Curve (AUC)
● Inputs: true labels and predictions
● Variability assessed by Standard Deviation or 

Bootstrap Confidence Intervals (implemented in C)
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Feature List Analysis

● The ordered lists from the feature ranking 
experiments can be analyzed in terms of:
– Stability - Canberra indicator on top-k positions 

(implemented in C) [Jurman et al., 2008]

– Extraction indicator

– Mean position indicator

● An optimal list on top-k sublists can be retrieved 
(Borda Count [JC de Borda, 1781])
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Landscaping and Parameters Tuning Tools

● The package includes executable scripts to be 
used off-the-shelf for landscaping and parameter 
tuning tasks:

● User can choose the resampling method, range 
and number of steps

● Error, MCC and Canberra Distance are retrieved 
for each step

svm­landscape
fda­landscape
nn­landscape

srda­landscape
pda­landscape
irelief­sigma
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Landscaping Tools
Example

svm-landscape for SVM regularization parameter (C) tuning

● Stratified Monte-Carlo cross validation
● Standardize data
● 4 steps of C parameter

$ svm-landscape -d data.dat -c 4 10 -S -s -m -5 -M -2 -p 4
stratified monte carlo cv (4 sets, 10 pairs)
C 1.000000e-05: error 0.225000, mcc 0.590779
C 1.000000e-04: error 0.225000, mcc 0.583044
C 1.000000e-03: error 0.212500, mcc 0.610503
C 1.000000e-02: error 0.100000, mcc 0.814758
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Applications

● mlpy is the core of BioDCV (biodcv.fbk.eu) a distributed 
computing system for biomarker discovery

● mlpy is used by FBK-MPBA Research Unit for the MAQC-II 
project led by US Food and Drug Administration

● Runs on HPC facilities, Linux cluster at FBK and European Grid 
for E-sciencE (EGEE)

● mlpy is now used on datasets with dimension of thousands of 
samples and millions of features:

– Copy Number Variation (CNVs)

– Single Nucleotide Polymorphism (SNP)

– Gene Expression (Microarray)

– Proteomic (Mass Spectra)



22

Info

● mlpy is a project of:

Predictive Models for Biological and Environmental Data 
Analysis (MPBA) Research Unit (mpba.fbk.eu)

at Fondazione Bruno Kessler (FBK) (www.fbk.eu)

● Partially supported by AIRC-IFOM

● mlpy is free software. It is licensed under the GNU 
General Public License (GPL) version 3

● Homepage: mlpy.fbk.eu


