yid

FiPy
A Finite Volume PDE Solver Using Python
D.Wheeler,). E. Guyer & J.A.Warren

www.ctems.nist.gov/fipy/

Metallurgy Division &
Center for Theoretical and Computational Materials Science
Materials Science and Engineering Laboratory

N H National Institute of Standards and Technology ¢ Technology Administration e U.S. Department of Commerce

Motivation

@ Why a new PDE solver?

&) Codes written in C or FORTRAN have some inherent
inflexibility

&) Constant writing of new codes in CTCMS
O Institutional memory loss
) No distribution mechanism

@ Materials scientists: Unique system, ability to pose problems,
customize, without numerical background

500 nm

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

What is FiPy?

@ FiPy is a computer program written in Python to solve PDEs using the
Finite Volume method

&) Python is a powerful object oriented scripting language with tools for
numerics

&) The Finite Volume method is a way to solve a set of PDEs, similar to the
Finite Element or Finite Difference methods

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Simple Example
o

5 =V (Vo)+ 1
—~— ——
transient diffusion source

(/5‘:1::0 =0 (Mw:L =0

>>> ## create the mesh

NST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Simple Example

0

a—f V. (Vo) + 1
—~— N—— ~—~
transient diffusion source

(b‘x:O =0 Qs‘w:L =0

>>> ## create the mesh

>>> from fipy.meshes.grid1D import Grid1D
>>> nx = 1000

>>>L=1.

>>> mesh = Grid1D(nx = nx, dx = L/ nx)

>>> ## create the field variable

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Simple Example

0

a_f V. (Vo) + 1
—~— N—— ~—~
transient diffusion source

(b‘x:() =0 (b‘ﬂc:L =0

>>> ## create the mesh

>>> ## create the field variable

>>> from fipy.variables.cellVariable import CellVariable

>>> var = CellVariable(mesh = mesh)

>>> var.setValue(0.3, mesh.getCells(lambda cell: 0.4 * L < cell.getCenter() < 0.6 * L))

>>> ## create the viewer

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Simple Example
o

5 =V (Vo)+ 1
—~— ——
transient diffusion source

(/5‘93:0 =0 (Mw:L =0

>>> ## create the mesh 0.3f

>>> ## create the viewer

>>> from fipy.viewers import make
>>> viewer = make(var, limits = {’datamax’ : 0.31})
>>> viewer.plot() 0.1f

0.2

>>> ## create the equation

>>> ## create the boundary conditions 040 0.5

NST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Simple Example

0

a_f V. (Vo) + 1
—~— N—— ~—~
transient diffusion source

(b‘x:() =0 Qs‘w:L =0

>>> ## create the mesh

>>> ## create the equation

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.diffusionTerm import DiffusionTerm
>>> egn = TransientTerm() == DiffusionTerm() + 1.

>>> ## create the boundary conditions

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Simple Example
o

5 =V (Vo)+ 1
—~— ——
transient diffusion source

(b‘x:() =0 (b‘ﬂc:L =0

>>> ## create the mesh

>>> ## create the boundary conditions

>>> from fipy.boundaryConditions.fixedValue import FixedValue

>>> BCs = (FixedValue(mesh.getFacesLeft(), 0),
FixedValue(mesh.getFacesRight(), 0))

>>> ## solve the equation and plot the results

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

>>> ## create the mesh

Simple Example

0

a_f V. (Vo) + 1

N~ SN——r N~

transient diffusion source

Plz=0=0 @la=r =0
0.3F
0.2r
0.1f

>>> ## solve the equation and plot the results 980 0.5

>>> for step in range(100):

eqn.solve(var, boundaryConditions = BCs, dt = 0.001)

viewer.plot()

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

1.0

Phase Transformations / Material Interfaces

@ Typical system consists of:

f one non-conservative equation for interface or order parameter

f multiple conservative equations for species concentrations and heat
@ Phase field, level set or sharp interface methods
1 = : 1

. IVo| =1,
. % +U|Vop| =0
= COMPpOSition E
=== phase ficld .
. == sharp interface .
= = |evel set . =
= Z
< st 03
wr
s - .
= . S e .
. F=[f(o,c)dV.
oo] e
s \S2=-M%&
n
e~ 0 . =
0 : -------- - -l
NIST i 0 |

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Phase Separation

op Af a2
>>> ## create a mesh E—V-DV<8—¢—EV¢

>>> H# create a field variable a*

..... f=56"(1-0)

..... n-V¢ =0 on all boundaries

ii-V2p =0 on all boundaries

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Phase Separation

>>> ## create a mesh g—f = VDV (g—é B E2VQ¢>
>>> fro:n fipy.meshes.grid2D import Grid2D ,

z:z me;hl goGridZD(dx =2.,dy =2,nx=N,ny =N) ;= %¢2(1 —¢)*
::z ## create a field variable n-V¢ =0 on all boundaries
>>> ## create the equation ii-V?¢ =0 on all boundaries

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Phase Separation
99 _ V- DV (a—f — e2v2¢>

>>> ### create a mesh ot O
>>> ## create a field variable a’ 2
>>> from RandomArray import random J= ?¢ (1-9)

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(mesh = mesh,

>>> value = 0.5 + 0.0 * (random(mesh.getNumberOfCells()) - 0.5))
>>>

>>> #Ht create the equation

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Phase Separation

¢ 2 272

>>> ## create a mesh ot =V-Da” [l —6¢(1—¢)|Vp— V- DVeV7g

v \ S ~ _y & -~ -
SSS ## create a field variable transient 274 order diffusion 4% order diffusion
>>> ## create the equation
>>>a = | -V =0 on all boundaries
>>> e = |
>>>D = | n - V?’cb = (0 on all boundaries

>>> from fipy.terms.diffusionTerm import DiffusionTerm

>>> from fipy.terms.transientTerm import TransientTerm

>>> eqn = TransientTerm() == DiffusionTerm(D * a™*2 * (' | - 6 * var * (| - var))) - \
. DiffusionTerm((D, e**2))

>>>

>>> ## create a solver

>>> {Ht solve the equation and plot the results

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Phase Separation

op Of 90
>>> H create a mesh E_V-DV<8—¢—EV¢
>>> # create a field variable 2

..... f=5¢ -0

>>> ## create a solver
>>> from fipy.solvers.linearLUSolver import LinearLUSolver

>>> solver = LinearLUSolver(tolerance = le-10)
>>>

>>> HH create a viewer

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Phase Separation

>>> HH# create a mesh

>>> {Ht create a viewer
>>> from fipy.viewers import make

3915_ . a_f_Q 2
f:“’;&(l—cb)?

n-V¢ =0 on all boundaries

ii-V2p =0 on all boundaries

>>> viewer = make(vars = var, limits = {'datamin". 0, 'datamax": 1})

>>> viewer.plot()
>>>

>>> #Ht solve the equation and plot the results

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Phase Separation

do Of 202
>>> ##f create a mesh E_V'DV (8—¢_€ v ¢>

>>> H##H# create a field variable a2 1

>>> ## create a solver

>>> ## create a viewer

>>> ## solve the equation and plot the results
>>> dexp=-5

>>> from fipy.tools import numerix

>>> for step in range(1000):

e egn.solve(var, solver = solver, \

dt = min(10, numerix.exp(dexp)))
dexp += 0.1

e viewer.plot()

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Phase Separation
9 _ V-DV (a—f — 62V2gb)

>>> ## create a mesh ot
>>> from fipy.meshes.gmshlmport import Gmshimporter

>>> mesh = Gmshlmporter(‘'sphere.msh’)
>>> ## create a field variable

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Phase Separation
09 _

>>> H## create a mesh ot

Of _ 2g2

>>> ## solve the equation and plot the results
>>> dexp=-5
>>> from fipy.tools import numerix
>>> for step in range(1000):
dt = min(10, numerix.exp(dexp))
dexp += 0.1
eqn.solve(var, solver = solver, dt = dt)
viewer.plot()

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Range of FiPy examples

@ Problems modeled with FiPy

i;

©

Phase separation

2 Dendrites

2 Grain growth

Ternary Alloys

2 Phase field crystals

) Kirkendall effect
Electrochemlstry

2 Superconformal electrodeposition

©

©

©

©©

©

©

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Design

/V@dv:/Sr(ﬁ-v¢)ds+/5rn(ﬁ-v---)ds+/

(ﬁ-ﬁ)¢dS+/ Sy dV
S 14

1 . 1 transient diffusion nt? order diffusion convection source
[Vo| =1,

99 r
a2 +UIVel=0

m— COMPOSition
=== phase field

== sharp interface
= evel set

Finite Volume Method Documentation

phase field ¢
n
level set ¢

F=[f(g.c)av, Cell
=My
@ o

S

e Vertex

Interface Tracking < F| P), \

Object Oriented ——

20

It

Face

Solver

Leverage existing tools
Testing
$ python setup.py test

Pythnn

el el’s PySparse Distribution (CVS, bugs, mailing lists) e O

import fipy.models.test ... ok
import fipy.terms.test ... ok

s import fipy.tools.test ... ok
SOURCER rl}](.’ert \\\ [my sf.net 1 software map 1 donate to sf.ne import ﬁpy.meshes.numMesh.test ..ok
v

o import fipy.variables.test ... ok
Login via SSL . .
New User via SSL import fipy.viewers.test ... ok

Sci entiﬁ chthon Search Project: FiPy: Summary

This Project)

| [Seaven Summary | Admin | Home Page | Forums | Tracker | Bt
Patches | RFE | Lists | Tasks | Docs | Screenshots | Ni
Files |

)

-
1

I < |
i h/t b |
[= Eioms (W

-
S

1

results by YAHOO! search

SF.net Subscription

* Subscribe Now An object-oriented partial differential equation (PDE)
- Manage Subscription solver, written in Python, based on a standard finite

+ Realtime Statistics volume approach. Includes interface tracking algorithms,
+ Direct Download such as the phase field and level set methods, for solving
+ Priority Tech Support materials science problems.
+ Project Monitoring

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Design: Objects

Cell

.

Mesh

Vertex

NIST

BoundaryCondition

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Solver

SparseMatrix

Mesh

BoundaryCondition

Design: Mesh

Solver

SparseMatrix

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Design: Terms
poV — (p9)°V

At — E [FAn vgb]face + E FAn \Y% { } face T E Aqb face + VS¢
face face face
transient diffusion nt order diffusion convection source

Solver SparseMatrix

BoundaryCondition

vertex

@ Standard operators apply
(_add , sub ,etc.) with
Terms,Variables and nhumbers

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Design:Variables

@ Either:

&) variables set by assignment [:]
& set by intermediate calculation
@ Lazy evaluation

Mesh

@ Physical dimensions

__div__,etc.) with Terms,Variables and
numbers

@ Standard operators apply (add

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency: Run Time Comparison

0 0 0 Oh €
Q6.VO) Gy = a*VPo— 2L = Z85i90| - S2TIVP

TV WV TV
ansient diffusion source

o0 Vo
P(¢,V0) 5 =V [h62V9 +gs |V9|]

- g A\ - 4

transient diffusion

A\

Phase field equation - solved explicitly

s
Comparison with hand tailored
FORTRAN code (1800 lines) written
specifically for grain impingement giving
identical numerical results to FiPy (100
lines)
—1T

Grain Orientation

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Efficiency: Run Time Comparison

P(¢, ve)% =V- [h62V9 + gs

g \ -

transient

Vo
VO

0 0 0 Oh €
Q6.VO) Gy = *V2o— 2L = Z8si90| - S2TIVP

TV WV TV
transient diffusion source

|

o

[\ -

diffusion

Orientation equation - solved implicitly

s
Comparison with hand tailored
FORTRAN code (1800 lines) written
specifically for grain impingement giving
identical numerical results to FiPy (100
lines)
—1T

Grain Orientation

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Efficiency: Run Time Comparison

N FORTRAN (s) FiPy (s) Penalty
100 0.0008 0282 x353
400 0.0037 0.402 x109
1600 0.02 0.963 x48
6400 0.19 4.04 w21
25600 1.20 20.2 17 panaley with bure
102400 4.43 81.0 <18 4 P

NIST

Python and Numeric

How do we improve run times?

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency: Run Time Comparison
N FORTRAN (s) FiPy (s) Penalty FiPy --inline (s) Penalty

100 0.0008 0.282 X353 0.230 X 288
400 0.0037 0.402 x 109 0.285 XT7
1600 0.02 0.963 X 48 0.566 X 28
6400 0.19 4.04 x 21 1.94 x 10
25600 1.20 20.2 x17 9.05 X8
102400 4.43 81.0 x 18 36.4 X8

Penalty with some C
>>> class SomeTerm |n||n|ng

def _buildMatrix(self, var, boundaryConditions = (),dt = 1.):
from fipy.tools import inline

inline._optionallnline(self._buildMatrixIn, self._buildMatrixPy, L, var.getOId(), b, dt, coeffVectors)
return (L, b)

def _buildMatrixPy(self, L, oldArray, b, dt, coeffVectors): --inline flag to toggle
°°°° between code variants

inline._runinlineLoop | (
b(i) += oldArray(i) * oldCoeff(i) / dt;
b(i) += bCoeff(i);

National Institute of Standards and Technology W
Technology Administration, U.S. Department of Commerce

Efficiency: Profile, N = 102400

term.py B7 solve

binaryTe 1495 3158/, £31.750
variable.py 245 0.006 15798.149 5.053
variable.py 342 _ 0.010 15794.906 3.270

0.075 15463.175 103.088
555.884 13.897 14973.796 374.345
207.717 4154 14883.878 297.678
15302.381 26.048 14587.725 291.754

inline.py & _optionallnl
diffusionTerm.py 350 _buildMatrix
cellTerm.py 145 _buildMatrix

cellTerm.py 125 _buildMatrixln

Callees

@ Building is order N
@ Solving is higher order

ncalls | %time

89.514198 binaryTerm.py &3 _buildMatrix

linearPCESolverpy 72 _solve

90% of time building the matrix not solving

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency: Profile, N = 102400

profile: 192 functions, 34241 calls, totaltime = 35960 ms

file line | function ncalls | self percall total & | total percall

3.505 35287.704 1764.385

binanyTerm.py 63 _buildMatrix 50 74755 1495 31587.505 631.750
2610 16754 0.0 15798149 6.053
iable, “Fefresh 4830 47.114 3.270
inline. py _optionallnline 150 11.231 15463.175 103.088

buildMatrix 40
Ui ldM atrix

diffusionTerm.py 350 13.897 14973.796 374.345
4154 14883.878 297.678

15302.381 26.048 14587.725 291.754

cellTerm.py 145
cellTerm.py 125 _buNdMatrixin

44% of time spent calculating variables of which
58% is spent calculating non-inline variables

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency:Variable Operations

>>> from fipy.meshes.grid | D import GridI D

>>>nx =2

>>> mesh = Grid I D(nx = nx)

>>>

>>> from RandomArray import random

>>> from fipy.variables.cellVariable import CellVariable

>>> vars = [CellVariable(mesh = mesh, value = random(nx)) for i in range(5)]
>>> opVar = vars[0] * (vars[1] * vars[2] + vars[3] * vars[4])

>>>

>>> opVar

(CellVariable(value = ..., mesh = ...) * ((CellVariable(..) * CellVariable(..)) +
(CellVariable(..) * CellVariable(..)))

>>> print opVar

[0.93079731,0.33666286,]

>>> vars[0].setValue(random(nx))

>>> print opVar

[0.81214315,0.24010101,]

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency:Variable Operations

>>> from fipy.meshes.grid | D import GridI D

>>>npx =2

>>> mesh = Grid I D(nx = nx)

>>>

>>> from RandomArray import random

>>> from fipy.variables.cellVariable import CellVariable

>>> vars = [CellVariable(mesh = mesh, value = random(nx)) for i in range(5)]
>>> opVar = vars[0] * (vars[1] * vars[2] + vars[3] * vars[4])

>>>

>>> opVar

(CellVariable(value = ..., mesh = ...) * ((CellVariable(..) * CellVariable(..)) +
(CellVariable(..) * CellVariable(..)))

>>> print opVar

[093079731-033606286]——ow__

>>> vars[0].setValue(random(nx)) 4 OPerauonS

>>> print opVar

[O.8I2I43I5,0.240I(0IOI,]\ I Opel‘ation due to
lazy evaluation

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency:Variable Operations

>>> from fipy.meshes.grid D import Grid|ID

>>> inline._runlinlineLoop I (

>>>nx =2 o

... V. = vO(i) * (vI(i) * v2(i) + v3(i) * v4(i));
~> mesh = Grid | D{nx = 1) op v%r(zl)va;[g]) (vI() * v2(i) + v3(i) * v4()))
>>> ’ ’

>>> from RandomArray import random

>>> from fipy.variables.cellVariable import CellVariable

>>> vars = [CellVariable(mesh=-rmesh;value-=-random(nx)) for i in range(5)]
>>> opVar(= vars[0] * (vars[1] * vars[2] + vars[3] * vars[4])

>>>

>>> opVar
(CellVariable(value = ..., mesh = ...) * ((CellVariable(..) * Cel
(CellVariable(..) * CellVariable(..)))

>>> print opVar

[0.93079731,0.33666286,]

>>> vars[0].setValue(random(nx)) Proposed automated C inlining of binary and
>>> print opVar . . .
[0.81214315,024010101] unary variable operators by forming combined

strings of C code

National Institute of Standards and Technology ﬁ

Technology Administration, U.S. Department of Commerce

Efficiency:Variable Operations

>>> from fipy.meshes.grid D import Grid|ID

>>> inline._runlnlineLoop | (

>>>nx =2 Loopl (" | | | N
>>> mesh = Grid I D(nx = nx) 3"3,\\/2;(:')\/;;;?8]),* (vI(i) * v2(i) + v3(i) * v4());
>>>

>>> from RandomArray import random

>>> from fipy.variables.cellVariable import CellVariable

>>> vars = [CellVariable(mesh = mesh, value = random(nx)) for i in range(5)]
>>> opVar = vars[0] * (vars[1] * vars[2] + vars[3] * vars[4])

>>>
>>> opVar .
(CellVariable(value = ..., mesh : .
(CellVariable(.) * CellVariable(| | — 221e8s Considerable speed
>>> print opVar ~P [— 32768 up when C inlining

N - 8192 .
[0.93079731,0.33666286,] p — 018 replaces Numeric for
>>> vars[0].setValue(random(& Itiol .
>>> print opVar = multiple operations
[0.81214315,0.24010101,] .

=

o If i

o

)

=

=

Z.

% 6 12

NISI' Number of Operations ,%?

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency: Memory Usage

N FORTRAN (KB) FiPy (KB) Penalty

100 812 30068 x37
400 884 31260 %35
1600 1080 34280 x32
6400 1920 47864 x25
25600 5240 91872
102400 18480 269332 Terrible
W overall
memory use
Comparison with hand tailored
FORTRAN code (1800 lines) written
specifically for grain impingement giving
identical numerical results to FiPy (100
- lines)

Grain Orientation

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Efficiency: Memory Usage

N FORTRAN (KB) FiPy (KB) Penalty Python (%) Mesh (%)

100 812 30068 x37 13 40
400 884 31260 %35 12 39
1600 1080 34280 x32 11 40
6400 1920 47864 x25 8 36
25600 5240 91872 x18 4 33
102400 18480 269332 x15 1 32

How do we improve memory usage!

@ Memory usage breakdown

&) ~30-40 % Mesh

) ~40-50 % Variable (estimate)

' sparse matrix, deleted after build.
' other Numeric arrays

«

ot
b/

Cﬁ
X

©
9,

©
9,

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Efficiency: Memory Usage

N FORTRAN (KB) FiPy (KB) Penalty Python (%) Mesh (%)

100 812 30068 x37 13 40
400 884 31260 %35 12 39
1600 1080 34280 x32 11 40
6400 1920 47864 x25 8 36
25600 5240 91872 x18 4 33
102400 18480 269332 x15 1 32

How do we improve memory usage!

@ More efficient caching of mesh arrays
@ Specialized grid meshes

@ Considerable memory usage improvement

National Institute of Standards and Technology %

Technology Administration, U.S. Department of Commerce

Efficiency: Memory Usage

N FORTRAN (KB) FiPy (KB) Penalty Python (%) Mesh (%)

100 812 30068 x37 13 40
400 884 31260 %35 12 39
1600 1080 34280 x32 11 40
6400 1920 47864 x25 8 36
25600 5240 91872 x18 4 33
102400 18480 269332 x15 1 32

How do we improve memory usage!

- * * * . .

;z; opVar Fvars[0] * (vars[1] * vars[2] + vars[3] (vi*s[4]) DO not store lntermedlate
>>> opVar | | values for operator
(CellVariable(value = ..., mesh = ...) * ((CellVariable(..) * CellVariable(..)) + .

(CellVariable(..) * CellVariable(..))) variables

@ Lose some benefits (but not all) of lazy evaluation
@ Will be implicit for C inlined variable operations

@ Many variables recalculated every time step anyway

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

NIST @ Considerable memory usage improvement ;

Sparse Matrices / Linear Solvers

@ What are the options?

&) Pysparse

& scipy.linalg
&) Pytrilinos

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Pysparse

@ Pysparse

&) Straightforward to install and test

&) Adequate documentation

&) Sparse matrices interact with
solvers

&) Standard solvers available

&) Subsequently wrapped sparse
matrix module for standard

python operations in
_SparseMatrix class

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

>>> from fipy.tools.sparseMatrix import _SparseMatrix
>>> L = _SparseMatrix(size = 3)
>>> |

>>> L.put((2.,2.,2.),(0, 1,2),(0, 1,2))
>>> L.put((-1.,-1.), (0, 1), (1,2))
>>> L.put((-1.,-1.),(1,2), (0, I))
>>> |
2.000000 -1.000000 ---
-1.000000 2.000000 -1.000000
--- -1.000000 2.000000

>>> L *L

5.000000 -4.000000 1.000000
-4.000000 6.000000 -4.000000

1.000000 -4.000000 5.000000
>>> from fipy.tools import numerix
>>> x = numerix.zeros(3, 'd")
>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> LinearLUSolver()._solve(L, x, numerix.array((0, 0, 1)))

>>> print X

[0.25,0.5,0.75,]

scipy.linalg

@ scipy.linalg

&) Straightforward to install and test
&) No useful documentation
&) Sparse Matrices!?
&) Some scipy solvers implemented in FiPy
O wrapped with LinearScipyLUSolver and linearScipyGMRESSolver
& Currently requires conversion of sparse matrix to numeric arrays

National Institute of Standards and Technology ﬁ

Technology Administration, U.S. Department of Commerce

Pytrilinos

@ Pytrilinos

&) Installation?
& Documentation?
&) Mailing list?

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Future Work

@ Efficiency improvements

@ Adaptive meshes

@ Algebraic multigrid

@ Cell-centered finite volume
@ Spectral methods

@ Repair/improve support for physical dimensions

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Summary

@ Cross-platform, Open Source code for solving phase transformation
problems

@ Capable of solving multivariate, coupled, non-linear PDEs

@ Extensive documentation, dozens of examples, hundreds of tests
@ Python syntax both easy to learn and powerful

@ Object-oriented structure easy to adapt to unique problems

@ Slower to run than hand-tailored FORTRAN or C...

Q ...but much faster to write

www.ctems.nist.gov/fipy/
NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Acknowledgements

@ Alex Mont — Montgomery Blair High School

@ John Dukovic — Applied Materials

@ Daniel Josell — NIST Metallurgy Division

@ Tom Moffat — NIST Metallurgy Division

@ Steve Langer — NIST Information Technology Laboratory

@ Andrew Reid — NIST Materials Science and Engineering Laboratory
@ Edwin Garcia — NIST Materials Science and Engineering Laboratory
@ Daniel Lewis — GE Ceramic and Metallurgy Technologies

@ Yosi Shacham-Diamand - Tel Aviv University

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

