PDE Simulation with Python

Matthew Knepley
PETSc Developer
Mathematics and Computer Science Division

Argonne National Laboratory



ORGANIZATION

e PE'T'Sc Introduction

e Structural Considerations

e Implementations

e Future Directions




WHAT 1s PETSc?

e A freely available and supported research code
- Download from
- Free for everyone, including industrial users
- Hyperlinked manual, examples, and manual pages for all routines
- Hundreds of tutorial-style examples

- Support via email:

- Usable from C, C++, Fortran 77/90, and Python


http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

WHAT 1s PETSc?

e Portable to any parallel system supporting MPI, including:
- Tightly coupled systems
Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise
- Loosely coupled systems, such as networks of workstations

Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows

e PETSc History
- Begun September 1991
- Over 8,500 downloads since 1995 (version 2), currently 250 per month

e PETSc Funding and Support
- Department of Energy
SciDAC, MICS Program

- National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program



THE PETSc TEAM

Bill

Gropp

e o
Satish Balay

Dinésh II{a-ilshik Matt Knepley

P
¢ : ; B
:; W R ' i‘. 3
<. \ J ‘ .
. - : - ' 1‘_‘:‘; |

[ =
Hong Zhang Victor Eijkhout | Lois Mclnnes




WHO Usks PETSc?

e Computational Scientists

- PyLith (TECTON), Underworld, Columbia group

e Algorithm Developers

- Iterative methods researchers

e Package Developers
- SLEPc, TAO, MagPar, StGermain



AUTOMATIC DOWNLOADS

e Starting in 2.2.1, some packages are automatically
- Downloaded
- Configured and Built (in $PETSC DIR/externalpackages)
- Installed in PET'Sc

e Currently works for
- PETSc documentation utilities (Sowing, lgrind, c2html)
- BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
- MPICH, MPE, LAM
- ParMetis, Chaco, Jostle, Party, Scotch
- MUMPS, Spooles, SuperLLU, SuperLU_Dist, UMFPack
- Prometheus, HYPRE, ML, SPAI

- Sundials



Structure of Scalable PDE Algorithms



HIERARCHY

The central feature of algorithms for PDEs is
hierarchical decomposition

e Key operations
- Restriction

- Assembly

e Bulk of the computation is local


http://www.mcs.anl.gov/petsc/petsc-as/documentation/tutorials/sieve.pdf

ALGORITHMS

e Multigrid

e MM

e [F'inite elements

e [Minite difference

e PETSc DA parallelism



IMPLICATIONS

Python for control and logic
C for local computation

Decouple organization of storage from mathematical operations

- Vectors are not arrays

Lots of small arrays

- get/setValues() methods
Views into larger arrays

Dense, local computation is cache/bandwidth efficient



Wrapper Implementations



IMPLEMENTATIONS

e PETSc (SIDL)
- Parsers a SIDL interface description

- Generates a C extension module for each class and Python for enums

e petscdpy (SWIG)
- Lisandro Dalcin (CIMEC)
- Parsers headers

- Generates a single C extension module and Python for each class

e pypetsc (Pyrex)
- Simon Burton (ANU)
- Parsers headers
- Generates a single C extensions module and Python infrastructure

- Python handles initialization /finalization and creation/destruction



Interface is more important than implementation

COMMONALITIES

Class and method names

- Type signatures

- Function pointer signatures

Enumerations

Static factory methods
- Not in SIDL

Basically the SIDL




CooL THINGS

e Multiple import roots

- Necessary for componentized development

e Function pointers (closures)
- Dispatch from a suitable C wrapper

- Alternative to interfaces (SIDL)

- Type checking is dynamic (an exception thrown on arg mismatch)



MuLTIPLE IMPORT ROOTS

e Hooks Modifications
- Augment the default search path

e [.oader Modifications

- find_module() now returns a list of paths

e Importer Modifications
- Module __path__ member is now a list

- Install custom loader and importer

e Installation

loader = Loader (Hooks())
importer = Importer(loader)

importer.install()

e Code in $PETSC DIR/python/sidl/BuildSystem/importer.py



FUNCTION POINTERS

e Input is parsed as a object pointer in the C API

e A C dispatch function is set as the callback

- The object pointer becomes the context arg

e The dispatch function calls the method with appropriate args

- Of course, no context arg (come from lexical scope)



DISTRIBUTING THE WRAPPERS

e All implementations distribute
- C that links to the Python library and PETSc
- Some Python

e SIDL version is currently in PETSc
- Configure with -with _python -with shared -with dynamic
- Other versions will be released this fall (distutils)

e Harder to distribute construction mechanism



EXAMPLES

e 2D Poisson
- Finite Differences

- $PETSC DIR/src/snes/examples/tutorials/exl.py

e 2D Bratu
- —Au— e =0
- Finite Differences

- $PETSC DIR/src/snes/examples/tutorials/ex2.py

e 2D Poisson
- P; finite elements

- petscé4py/test/test _poisson2.py



The Future



WHAT I WouLD DO DIFFERENTLY

e Allow Python to handle:
- Object structure

- Dynamic loading

e Automate double dispatch

- Could allow mixing precisions

e Better semantics

- Specify who is responsible for memory



SHAMELESS PLuags

FENICS Project:

e ['Inite element Automatic Tabulator
- Declarative specification of elements
- Library of quadratures and shapes

- Generates complete discrete jet of an element

e Fenics Form Compiler
- Constructs element tensors from weak forms
- (Generates source code

- Uses FIAT and exact quadrature


http://www.fenics.org

