tiecorrect#
- scipy.stats.tiecorrect(rankvals)[source]#
Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
- Parameters:
- rankvalsarray_like
A 1-D sequence of ranks. Typically this will be the array returned by
rankdata.
- Returns:
- factorfloat
Correction factor for U or H.
See also
rankdataAssign ranks to the data
mannwhitneyuMann-Whitney rank test
kruskalKruskal-Wallis H test
Notes
Array API Standard Support
tiecorrecthas experimental support for Python Array API Standard compatible backends in addition to NumPy. Please consider testing these features by setting an environment variableSCIPY_ARRAY_API=1and providing CuPy, PyTorch, JAX, or Dask arrays as array arguments. The following combinations of backend and device (or other capability) are supported.Library
CPU
GPU
NumPy
✅
n/a
CuPy
n/a
⛔
PyTorch
⛔
⛔
JAX
⛔
⛔
Dask
⛔
n/a
See Support for the array API standard for more information.
References
[1]Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill.
Examples
>>> from scipy.stats import tiecorrect, rankdata >>> tiecorrect([1, 2.5, 2.5, 4]) 0.9 >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4]) >>> ranks array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5]) >>> tiecorrect(ranks) 0.9833333333333333