scipy.stats.nakagami#

scipy.stats.nakagami = <scipy.stats._continuous_distns.nakagami_gen object>[source]#

A Nakagami continuous random variable.

As an instance of the rv_continuous class, nakagami object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Methods

rvs(nu, loc=0, scale=1, size=1, random_state=None)

Random variates.

pdf(x, nu, loc=0, scale=1)

Probability density function.

logpdf(x, nu, loc=0, scale=1)

Log of the probability density function.

cdf(x, nu, loc=0, scale=1)

Cumulative distribution function.

logcdf(x, nu, loc=0, scale=1)

Log of the cumulative distribution function.

sf(x, nu, loc=0, scale=1)

Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).

logsf(x, nu, loc=0, scale=1)

Log of the survival function.

ppf(q, nu, loc=0, scale=1)

Percent point function (inverse of cdf — percentiles).

isf(q, nu, loc=0, scale=1)

Inverse survival function (inverse of sf).

moment(order, nu, loc=0, scale=1)

Non-central moment of the specified order.

stats(nu, loc=0, scale=1, moments=’mv’)

Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).

entropy(nu, loc=0, scale=1)

(Differential) entropy of the RV.

fit(data)

Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.

expect(func, args=(nu,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)

Expected value of a function (of one argument) with respect to the distribution.

median(nu, loc=0, scale=1)

Median of the distribution.

mean(nu, loc=0, scale=1)

Mean of the distribution.

var(nu, loc=0, scale=1)

Variance of the distribution.

std(nu, loc=0, scale=1)

Standard deviation of the distribution.

interval(confidence, nu, loc=0, scale=1)

Confidence interval with equal areas around the median.

Notes

The probability density function for nakagami is:

\[f(x, \nu) = \frac{2 \nu^\nu}{\Gamma(\nu)} x^{2\nu-1} \exp(-\nu x^2)\]

for \(x >= 0\), \(\nu > 0\). The distribution was introduced in [2], see also [1] for further information.

nakagami takes nu as a shape parameter for \(\nu\).

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, nakagami.pdf(x, nu, loc, scale) is identically equivalent to nakagami.pdf(y, nu) / scale with y = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

References

[1]

“Nakagami distribution”, Wikipedia https://en.wikipedia.org/wiki/Nakagami_distribution

[2]

M. Nakagami, “The m-distribution - A general formula of intensity distribution of rapid fading”, Statistical methods in radio wave propagation, Pergamon Press, 1960, 3-36. DOI:10.1016/B978-0-08-009306-2.50005-4

Examples

>>> import numpy as np
>>> from scipy.stats import nakagami
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Get the support:

>>> nu = 4.97
>>> lb, ub = nakagami.support(nu)

Calculate the first four moments:

>>> mean, var, skew, kurt = nakagami.stats(nu, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(nakagami.ppf(0.01, nu),
...                 nakagami.ppf(0.99, nu), 100)
>>> ax.plot(x, nakagami.pdf(x, nu),
...        'r-', lw=5, alpha=0.6, label='nakagami pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = nakagami(nu)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = nakagami.ppf([0.001, 0.5, 0.999], nu)
>>> np.allclose([0.001, 0.5, 0.999], nakagami.cdf(vals, nu))
True

Generate random numbers:

>>> r = nakagami.rvs(nu, size=1000)

And compare the histogram:

>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
>>> ax.set_xlim([x[0], x[-1]])
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
../../_images/scipy-stats-nakagami-1.png