zscore#
- scipy.stats.mstats.zscore(a, axis=0, ddof=0, nan_policy='propagate')[source]#
Compute the z score.
Compute the z score of each value in the sample, relative to the sample mean and standard deviation.
- Parameters:
- aarray_like
An array like object containing the sample data.
- axisint or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole array a.
- ddofint, optional
Degrees of freedom correction in the calculation of the standard deviation. Default is 0.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’. Note that when the value is ‘omit’, nans in the input also propagate to the output, but they do not affect the z-scores computed for the non-nan values.
- Returns:
- zscorearray_like
The z-scores, standardized by mean and standard deviation of input array a.
See also
numpy.mean
Arithmetic average
numpy.std
Arithmetic standard deviation
scipy.stats.gzscore
Geometric standard score
Notes
This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses asanyarray instead of asarray for parameters).
References
[1]“Standard score”, Wikipedia, https://en.wikipedia.org/wiki/Standard_score.
[2]Huck, S. W., Cross, T. L., Clark, S. B, “Overcoming misconceptions about Z-scores”, Teaching Statistics, vol. 8, pp. 38-40, 1986
Examples
>>> import numpy as np >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324])
Computing along a specified axis, using n-1 degrees of freedom (
ddof=1
) to calculate the standard deviation:>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], ... [ 0.7149, 0.0775, 0.6072, 0.9656], ... [ 0.6341, 0.1403, 0.9759, 0.4064], ... [ 0.5918, 0.6948, 0.904 , 0.3721], ... [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
An example with
nan_policy='omit'
:>>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15], ... [14.95, 16.06, 121.25, 94.35, 29.81]]) >>> stats.zscore(x, axis=1, nan_policy='omit') array([[-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602], [-0.91611681, -0.89090508, 1.4983032 , 0.88731639, -0.5785977 ]])