scipy.stats.exponnorm#
- scipy.stats.exponnorm = <scipy.stats._continuous_distns.exponnorm_gen object>[source]#
An exponentially modified Normal continuous random variable.
Also known as the exponentially modified Gaussian distribution [1].
As an instance of the
rv_continuous
class,exponnorm
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Methods
rvs(K, loc=0, scale=1, size=1, random_state=None)
Random variates.
pdf(x, K, loc=0, scale=1)
Probability density function.
logpdf(x, K, loc=0, scale=1)
Log of the probability density function.
cdf(x, K, loc=0, scale=1)
Cumulative distribution function.
logcdf(x, K, loc=0, scale=1)
Log of the cumulative distribution function.
sf(x, K, loc=0, scale=1)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(x, K, loc=0, scale=1)
Log of the survival function.
ppf(q, K, loc=0, scale=1)
Percent point function (inverse of
cdf
— percentiles).isf(q, K, loc=0, scale=1)
Inverse survival function (inverse of
sf
).moment(order, K, loc=0, scale=1)
Non-central moment of the specified order.
stats(K, loc=0, scale=1, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(K, loc=0, scale=1)
(Differential) entropy of the RV.
fit(data)
Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(K,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution.
median(K, loc=0, scale=1)
Median of the distribution.
mean(K, loc=0, scale=1)
Mean of the distribution.
var(K, loc=0, scale=1)
Variance of the distribution.
std(K, loc=0, scale=1)
Standard deviation of the distribution.
interval(confidence, K, loc=0, scale=1)
Confidence interval with equal areas around the median.
Notes
The probability density function for
exponnorm
is:\[f(x, K) = \frac{1}{2K} \exp\left(\frac{1}{2 K^2} - x / K \right) \text{erfc}\left(-\frac{x - 1/K}{\sqrt{2}}\right)\]where \(x\) is a real number and \(K > 0\).
It can be thought of as the sum of a standard normal random variable and an independent exponentially distributed random variable with rate
1/K
.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,exponnorm.pdf(x, K, loc, scale)
is identically equivalent toexponnorm.pdf(y, K) / scale
withy = (x - loc) / scale
. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.An alternative parameterization of this distribution (for example, in the Wikipedia article [1]) involves three parameters, \(\mu\), \(\lambda\) and \(\sigma\).
In the present parameterization this corresponds to having
loc
andscale
equal to \(\mu\) and \(\sigma\), respectively, and shape parameter \(K = 1/(\sigma\lambda)\).Added in version 0.16.0.
References
[1] (1,2)Exponentially modified Gaussian distribution, Wikipedia, https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution
Examples
>>> import numpy as np >>> from scipy.stats import exponnorm >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Get the support:
>>> K = 1.5 >>> lb, ub = exponnorm.support(K)
Calculate the first four moments:
>>> mean, var, skew, kurt = exponnorm.stats(K, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(exponnorm.ppf(0.01, K), ... exponnorm.ppf(0.99, K), 100) >>> ax.plot(x, exponnorm.pdf(x, K), ... 'r-', lw=5, alpha=0.6, label='exponnorm pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = exponnorm(K) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = exponnorm.ppf([0.001, 0.5, 0.999], K) >>> np.allclose([0.001, 0.5, 0.999], exponnorm.cdf(vals, K)) True
Generate random numbers:
>>> r = exponnorm.rvs(K, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) >>> ax.set_xlim([x[0], x[-1]]) >>> ax.legend(loc='best', frameon=False) >>> plt.show()