scipy.stats.dlaplace#
- scipy.stats.dlaplace = <scipy.stats._discrete_distns.dlaplace_gen object>[source]#
A Laplacian discrete random variable.
As an instance of the
rv_discrete
class,dlaplace
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Methods
rvs(a, loc=0, size=1, random_state=None)
Random variates.
pmf(k, a, loc=0)
Probability mass function.
logpmf(k, a, loc=0)
Log of the probability mass function.
cdf(k, a, loc=0)
Cumulative distribution function.
logcdf(k, a, loc=0)
Log of the cumulative distribution function.
sf(k, a, loc=0)
Survival function (also defined as
1 - cdf
, but sf is sometimes more accurate).logsf(k, a, loc=0)
Log of the survival function.
ppf(q, a, loc=0)
Percent point function (inverse of
cdf
— percentiles).isf(q, a, loc=0)
Inverse survival function (inverse of
sf
).stats(a, loc=0, moments=’mv’)
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, loc=0)
(Differential) entropy of the RV.
expect(func, args=(a,), loc=0, lb=None, ub=None, conditional=False)
Expected value of a function (of one argument) with respect to the distribution.
median(a, loc=0)
Median of the distribution.
mean(a, loc=0)
Mean of the distribution.
var(a, loc=0)
Variance of the distribution.
std(a, loc=0)
Standard deviation of the distribution.
interval(confidence, a, loc=0)
Confidence interval with equal areas around the median.
Notes
The probability mass function for
dlaplace
is:\[f(k) = \tanh(a/2) \exp(-a |k|)\]for integers \(k\) and \(a > 0\).
dlaplace
takes \(a\) as shape parameter.The probability mass function above is defined in the “standardized” form. To shift distribution use the
loc
parameter. Specifically,dlaplace.pmf(k, a, loc)
is identically equivalent todlaplace.pmf(k - loc, a)
.Examples
>>> import numpy as np >>> from scipy.stats import dlaplace >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Get the support:
>>> a = 0.8 >>> lb, ub = dlaplace.support(a)
Calculate the first four moments:
>>> mean, var, skew, kurt = dlaplace.stats(a, moments='mvsk')
Display the probability mass function (
pmf
):>>> x = np.arange(dlaplace.ppf(0.01, a), ... dlaplace.ppf(0.99, a)) >>> ax.plot(x, dlaplace.pmf(x, a), 'bo', ms=8, label='dlaplace pmf') >>> ax.vlines(x, 0, dlaplace.pmf(x, a), colors='b', lw=5, alpha=0.5)
Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pmf
:>>> rv = dlaplace(a) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Check accuracy of
cdf
andppf
:>>> prob = dlaplace.cdf(x, a) >>> np.allclose(x, dlaplace.ppf(prob, a)) True
Generate random numbers:
>>> r = dlaplace.rvs(a, size=1000)