scipy.special.
sh_jacobi#
- scipy.special.sh_jacobi(n, p, q, monic=False)[source]#
Shifted Jacobi polynomial.
Defined by
G_n^{(p, q)}(x) = \binom{2n + p - 1}{n}^{-1}P_n^{(p - q, q - 1)}(2x - 1),where P_n^{(\cdot, \cdot)} is the nth Jacobi polynomial.
- Parameters:
- nint
Degree of the polynomial.
- pfloat
Parameter, must have p > q - 1.
- qfloat
Parameter, must be greater than 0.
- monicbool, optional
If True, scale the leading coefficient to be 1. Default is False.
- Returns:
- Gorthopoly1d
Shifted Jacobi polynomial.
Notes
For fixed p, q, the polynomials G_n^{(p, q)} are orthogonal over [0, 1] with weight function (1 - x)^{p - q}x^{q - 1}.