scipy.special.ncfdtri#
- scipy.special.ncfdtri(dfn, dfd, nc, p, out=None) = <ufunc 'ncfdtri'>#
Inverse with respect to f of the CDF of the non-central F distribution.
See
ncfdtr
for more details.- Parameters:
- dfnarray_like
Degrees of freedom of the numerator sum of squares. Range (0, inf).
- dfdarray_like
Degrees of freedom of the denominator sum of squares. Range (0, inf).
- ncarray_like
Noncentrality parameter. Range [0, inf).
- parray_like
Value of the cumulative distribution function. Must be in the range [0, 1].
- outndarray, optional
Optional output array for the function results
- Returns:
- fscalar or ndarray
Quantiles, i.e., the upper limit of integration.
See also
ncfdtr
CDF of the non-central F distribution.
ncfdtridfd
Inverse of
ncfdtr
with respect to dfd.ncfdtridfn
Inverse of
ncfdtr
with respect to dfn.ncfdtrinc
Inverse of
ncfdtr
with respect to nc.scipy.stats.ncf
Non-central F distribution.
Notes
This function calculates the Quantile of the non-central f distribution using the Boost Math C++ library [1].
Note that argument order of
ncfdtri
is different from that of the similarppf
method ofscipy.stats.ncf
. p is the last parameter ofncfdtri
but the first parameter ofscipy.stats.ncf.ppf
.References
[1]The Boost Developers. “Boost C++ Libraries”. https://www.boost.org/.
Examples
>>> from scipy.special import ncfdtr, ncfdtri
Compute the CDF for several values of f:
>>> f = [0.5, 1, 1.5] >>> p = ncfdtr(2, 3, 1.5, f) >>> p array([ 0.20782291, 0.36107392, 0.47345752])
Compute the inverse. We recover the values of f, as expected:
>>> ncfdtri(2, 3, 1.5, p) array([ 0.5, 1. , 1.5])