scipy.special.ellipkm1#
- scipy.special.ellipkm1(p, out=None) = <ufunc 'ellipkm1'>#
Complete elliptic integral of the first kind around m = 1
This function is defined as
\[\begin{split}K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt\end{split}\]where m = 1 - p.
- Parameters:
- parray_like
Defines the parameter of the elliptic integral as m = 1 - p.
- outndarray, optional
Optional output array for the function values
- Returns:
- Kscalar or ndarray
Value of the elliptic integral.
See also
Notes
Wrapper for the Cephes [1] routine ellpk.
For
p <= 1
, computation uses the approximation,\[\begin{split}K(p) \\approx P(p) - \\log(p) Q(p),\end{split}\]where \(P\) and \(Q\) are tenth-order polynomials. The argument p is used internally rather than m so that the logarithmic singularity at
m = 1
will be shifted to the origin; this preserves maximum accuracy. Forp > 1
, the identity\[\begin{split}K(p) = K(1/p)/\\sqrt(p)\end{split}\]is used.
References
[1]Cephes Mathematical Functions Library, http://www.netlib.org/cephes/