scipy.special.betainccinv#
- scipy.special.betainccinv(a, b, y, out=None) = <ufunc 'betainccinv'>#
Inverse of the complemented regularized incomplete beta function.
Computes \(x\) such that:
\[y = 1 - I_x(a, b) = 1 - \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1-t)^{b-1}dt,\]where \(I_x\) is the normalized incomplete beta function
betainc
and \(\Gamma\) is thegamma
function [1].- Parameters:
- a, barray_like
Positive, real-valued parameters
- yarray_like
Real-valued input
- outndarray, optional
Optional output array for function values
- Returns:
- scalar or ndarray
Value of the inverse of the regularized incomplete beta function
See also
Notes
Added in version 1.11.0.
This function wraps the
ibetac_inv
routine from the Boost Math C++ library [2].References
[1]NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/8.17
[2]The Boost Developers. “Boost C++ Libraries”. https://www.boost.org/.
Examples
>>> from scipy.special import betainccinv, betaincc
This function is the inverse of
betaincc
for fixed values of \(a\) and \(b\).>>> a, b = 1.2, 3.1 >>> y = betaincc(a, b, 0.2) >>> betainccinv(a, b, y) 0.2
>>> a, b = 7, 2.5 >>> x = betainccinv(a, b, 0.875) >>> betaincc(a, b, x) 0.875