scipy.spatial.distance.
chebyshev#
- scipy.spatial.distance.chebyshev(u, v, w=None)[source]#
Compute the Chebyshev distance.
The Chebyshev distance between real vectors \(u \equiv (u_1, \cdots, u_n)\) and \(v \equiv (v_1, \cdots, v_n)\) is defined as [1]
\[d_\textrm{chebyshev}(u,v) := \max_{1 \le i \le n} |u_i-v_i|\]If a (non-negative) weight vector \(w \equiv (w_1, \cdots, w_n)\) is supplied, the weighted Chebyshev distance is defined to be the weighted Minkowski distance of infinite order; that is,
\[\begin{split}\begin{align} d_\textrm{chebyshev}(u,v;w) &:= \lim_{p\rightarrow \infty} \left( \sum_{i=1}^n w_i | u_i-v_i |^p \right)^\frac{1}{p} \\ &= \max_{1 \le i \le n} 1_{w_i > 0} | u_i - v_i | \end{align}\end{split}\]- Parameters:
- u(N,) array_like of floats
Input vector.
- v(N,) array_like of floats
Input vector.
- w(N,) array_like of floats, optional
Weight vector. Default is
None
, which gives all pairs \((u_i, v_i)\) the same weight1.0
.
- Returns:
- chebyshevfloat
The Chebyshev distance between vectors u and v, optionally weighted by w.
References
Examples
>>> from scipy.spatial import distance >>> distance.chebyshev([1, 0, 0], [0, 1, 0]) 1 >>> distance.chebyshev([1, 1, 0], [0, 1, 0]) 1