ordqz#
- scipy.linalg.ordqz(A, B, sort='lhp', output='real', overwrite_a=False, overwrite_b=False, check_finite=True)[source]#
QZ decomposition for a pair of matrices with reordering.
The documentation is written assuming array arguments are of specified “core” shapes. However, array argument(s) of this function may have additional “batch” dimensions prepended to the core shape. In this case, the array is treated as a batch of lower-dimensional slices; see Batched Linear Operations for details.
- Parameters:
- A(N, N) array_like
2-D array to decompose
- B(N, N) array_like
2-D array to decompose
- sort{callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given an ordered pair
(alpha, beta)
representing the eigenvaluex = (alpha/beta)
, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). For the real matrix pairsbeta
is real whilealpha
can be complex, and for complex matrix pairs bothalpha
andbeta
can be complex. The callable must be able to accept a NumPy array. Alternatively, string parameters may be used:‘lhp’ Left-hand plane (x.real < 0.0)
‘rhp’ Right-hand plane (x.real > 0.0)
‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)
With the predefined sorting functions, an infinite eigenvalue (i.e.,
alpha != 0
andbeta = 0
) is considered to lie in neither the left-hand nor the right-hand plane, but it is considered to lie outside the unit circle. For the eigenvalue(alpha, beta) = (0, 0)
, the predefined sorting functions all return False.- outputstr {‘real’,’complex’}, optional
Construct the real or complex QZ decomposition for real matrices. Default is ‘real’.
- overwrite_abool, optional
If True, the contents of A are overwritten.
- overwrite_bbool, optional
If True, the contents of B are overwritten.
- check_finitebool, optional
If true checks the elements of A and B are finite numbers. If false does no checking and passes matrix through to underlying algorithm.
- Returns:
- AA(N, N) ndarray
Generalized Schur form of A.
- BB(N, N) ndarray
Generalized Schur form of B.
- alpha(N,) ndarray
alpha = alphar + alphai * 1j. See notes.
- beta(N,) ndarray
See notes.
- Q(N, N) ndarray
The left Schur vectors.
- Z(N, N) ndarray
The right Schur vectors.
See also
Notes
On exit,
(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N
, will be the generalized eigenvalues.ALPHAR(j) + ALPHAI(j)*i
andBETA(j),j=1,...,N
are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the jth eigenvalue is real; if positive, then thej
th and(j+1)
st eigenvalues are a complex conjugate pair, withALPHAI(j+1)
negative.Added in version 0.17.0.
Examples
>>> import numpy as np >>> from scipy.linalg import ordqz >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) >>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]]) >>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp')
Since we have sorted for left half plane eigenvalues, negatives come first
>>> (alpha/beta).real < 0 array([ True, True, False, False], dtype=bool)