SciPy

scipy.special.hankel1e

scipy.special.hankel1e(v, z) = <ufunc 'hankel1e'>

Exponentially scaled Hankel function of the first kind

Defined as:

hankel1e(v, z) = hankel1(v, z) * exp(-1j * z)
Parameters:

v : array_like

Order (float).

z : array_like

Argument (float or complex).

Returns:

out : Values of the exponentially scaled Hankel function.

Notes

A wrapper for the AMOS [R375] routine zbesh, which carries out the computation using the relation,

\[H^{(1)}_v(z) = \frac{2}{\imath\pi} \exp(-\imath \pi v/2) K_v(z \exp(-\imath\pi/2))\]

where \(K_v\) is the modified Bessel function of the second kind. For negative orders, the relation

\[H^{(1)}_{-v}(z) = H^{(1)}_v(z) \exp(\imath\pi v)\]

is used.

References

[R375](1, 2) Donald E. Amos, “AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order”, http://netlib.org/amos/

Previous topic

scipy.special.hankel1

Next topic

scipy.special.hankel2