scipy.interpolate.Akima1DInterpolator¶

class
scipy.interpolate.
Akima1DInterpolator
(x, y, axis=0)[source]¶ Akima interpolator
Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously differentiable subspline built from piecewise cubic polynomials. The resultant curve passes through the given data points and will appear smooth and natural.
 Parameters
 xndarray, shape (m, )
1D array of monotonically increasing real values.
 yndarray, shape (m, …)
ND array of real values. The length of
y
along the first axis must be equal to the length ofx
. axisint, optional
Specifies the axis of
y
along which to interpolate. Interpolation defaults to the first axis ofy
.
See also
PchipInterpolator
PCHIP 1D monotonic cubic interpolator.
CubicSpline
Cubic spline data interpolator.
PPoly
Piecewise polynomial in terms of coefficients and breakpoints
Notes
New in version 0.14.
Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for plotting a pleasingly smooth curve through a few given points for purposes of plotting.
References
 [1] A new method of interpolation and smooth curve fitting based
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589602.
 Attributes
 axis
 c
 extrapolate
 x
Methods
__call__
(self, x[, nu, extrapolate])Evaluate the piecewise polynomial or its derivative.
derivative
(self[, nu])Construct a new piecewise polynomial representing the derivative.
antiderivative
(self[, nu])Construct a new piecewise polynomial representing the antiderivative.
roots
(self[, discontinuity, extrapolate])Find real roots of the the piecewise polynomial.