SciPy

scipy.sparse.linalg.inv

scipy.sparse.linalg.inv(A)[source]

Compute the inverse of a sparse matrix

Parameters:

A : (M,M) ndarray or sparse matrix

square matrix to be inverted

Returns:

Ainv : (M,M) ndarray or sparse matrix

inverse of A

Notes

This computes the sparse inverse of A. If the inverse of A is expected to be non-sparse, it will likely be faster to convert A to dense and use scipy.linalg.inv.

Examples

>>> from scipy.sparse import csc_matrix
>>> from scipy.sparse.linalg import inv
>>> A = csc_matrix([[1., 0.], [1., 2.]])
>>> Ainv = inv(A)
>>> Ainv
<2x2 sparse matrix of type '<type 'numpy.float64'>'
    with 3 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv)
<2x2 sparse matrix of type '<type 'numpy.float64'>'
    with 2 stored elements in Compressed Sparse Column format>
>>> A.dot(Ainv).todense()
matrix([[ 1.,  0.],
        [ 0.,  1.]])

New in version 0.12.0.